de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium.
de Duve Institute, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium.
Curr Biol. 2023 Jun 5;33(11):2213-2222.e4. doi: 10.1016/j.cub.2023.04.059. Epub 2023 May 18.
Despite a remarkable diversity of lifestyles, bacterial replication has only been investigated in a few model species. In bacteria that do not rely on canonical binary division for proliferation, the coordination of major cellular processes is still largely mysterious. Moreover, the dynamics of bacterial growth and division remain unexplored within spatially confined niches where nutrients are limited. This includes the life cycle of the model endobiotic predatory bacterium Bdellovibrio bacteriovorus, which grows by filamentation within its prey and produces a variable number of daughter cells. Here, we examined the impact of the micro-compartment in which predators replicate (i.e., the prey bacterium) on their cell-cycle progression at the single-cell level. Using Escherichia coli with genetically encoded size differences, we show that the duration of the predator cell cycle scales with prey size. Consequently, prey size determines predator offspring numbers. We found that individual predators elongate exponentially, with a growth rate determined by the nutritional quality of the prey, irrespective of prey size. However, the size of newborn predator cells is remarkably stable across prey nutritional content and size variations. Tuning the predatory cell cycle by modulating prey dimensions also allowed us to reveal invariable temporal connections between key cellular processes. Altogether, our data imply adaptability and robustness shaping the enclosed cell-cycle progression of B. bacteriovorus, which might contribute to optimal exploitation of the finite resources and space in their prey. This study extends the characterization of cell cycle control strategies and growth patterns beyond canonical models and lifestyles.
尽管生活方式多种多样,但细菌的复制仅在少数几种模式物种中进行了研究。在不依赖经典二分法进行增殖的细菌中,主要细胞过程的协调仍然在很大程度上是神秘的。此外,在营养物质有限的空间受限生境中,细菌的生长和分裂动态仍然未知。这包括模型内共生捕食细菌 Bdellovibrio bacteriovorus 的生命周期,它在猎物中通过丝状生长并产生可变数量的子细胞。在这里,我们研究了捕食者在其复制的微环境(即猎物细菌)中对其细胞周期进程的影响。使用具有遗传编码大小差异的大肠杆菌,我们表明捕食者细胞周期的持续时间与猎物的大小成正比。因此,猎物的大小决定了捕食者的后代数量。我们发现,单个捕食者呈指数伸长,其生长速率取决于猎物的营养质量,而与猎物的大小无关。然而,新生捕食者细胞的大小在猎物营养成分和大小变化方面非常稳定。通过调节猎物尺寸来调整捕食者的细胞周期,也使我们能够揭示关键细胞过程之间不变的时间连接。总之,我们的数据表明,适应性和稳健性塑造了 B. bacteriovorus 封闭的细胞周期进程,这可能有助于最佳利用其猎物中的有限资源和空间。这项研究扩展了对细胞周期控制策略和生长模式的特征描述,超越了经典模型和生活方式。