Suppr超能文献

基于视频的生物力学分析捕捉不同神经肌肉疾病的疾病特异性运动特征。

Video-based biomechanical analysis captures disease-specific movement signatures of different neuromuscular diseases.

作者信息

Ruth Parker S, Uhlrich Scott D, de Monts Constance, Falisse Antoine, Muccini Julie, Covitz Sydney, Vogt-Domke Shelby, Day John, Duong Tina, Delp Scott L

机构信息

Department of Computer Science, Stanford University.

Department of Mechanical Engineering, University of Utah.

出版信息

bioRxiv. 2025 Jul 29:2024.09.26.613967. doi: 10.1101/2024.09.26.613967.

Abstract

BACKGROUND

Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers but is traditionally confined to laboratory settings. Recent advances in smartphone video-based biomechanical analysis enable quantification of 3D movement with the ease and speed required for clinical settings. However, the potential of this technology to offer more sensitive assessments of human function than TFTs remains untested.

METHODS

To compare video-based analysis against TFTs, we collected an observational dataset from 129 individuals: 28 with facioscapulohumeral muscular dystrophy, 58 with myotonic dystrophy, and 43 controls with no diagnosed neuromuscular condition. We used OpenCap, a free open-source software tool, to capture smartphone video-based biomechanics of nine different movements in a median time of 16 minutes per participant. From these recordings we extracted 34 interpretable movement features. Using these features, we evaluated the ability of video-based biomechanics to reproduce four TFTs (10-meter walk, 10-meter run, timed up-and-go, and 5-time sit-to-stand) while capturing additional disease-specific signatures of movement.

RESULTS

Video-based biomechanical analysis reproduced all four TFTs (r > 0.98) with similar test-retest reliability. In addition, video metrics outperformed TFTs at disease classification (p = 0.021). Unlike TFTs, video-based biomechanical analysis identified disease-specific signatures of movement such as differences in gait kinematics that are not evident in TFTs.

CONCLUSION

Video-based biomechanical analysis can complement existing functional movement assessments by capturing more sensitive, disease-specific outcomes from human movement. This technology enables digital health solutions for assessing and monitoring motor function, complementing traditional clinical outcome measures to enhance care, management, and clinical trial design for movement-related conditions.

摘要

背景

评估人体运动对于诊断和监测与运动相关的疾病(如神经肌肉疾病)至关重要。定时功能测试(TFT)因其速度快和操作简单,是最广泛使用的评估方法之一,但它们无法捕捉特定疾病的运动模式。相反,生物力学分析可以产生敏感的特定疾病生物标志物,但传统上仅限于实验室环境。基于智能手机视频的生物力学分析的最新进展使得能够在临床环境所需的便捷性和速度下对三维运动进行量化。然而,这项技术提供比TFT更敏感的人体功能评估的潜力仍未得到验证。

方法

为了将基于视频的分析与TFT进行比较,我们收集了129名个体的观察数据集:28例面肩肱型肌营养不良患者、58例强直性肌营养不良患者和43名未诊断出神经肌肉疾病的对照者。我们使用免费的开源软件工具OpenCap,以每位参与者平均16分钟的时间捕捉基于智能手机视频的九种不同运动的生物力学数据。从这些记录中,我们提取了34个可解释的运动特征。利用这些特征,我们评估了基于视频的生物力学在捕捉额外的特定疾病运动特征的同时重现四种TFT(10米步行、10米跑步、定时起坐和五次坐立试验)的能力。

结果

基于视频的生物力学分析重现了所有四种TFT(r>0.98),具有相似的重测可靠性。此外,在疾病分类方面,视频指标优于TFT(p=0.021)。与TFT不同,基于视频的生物力学分析识别出特定疾病的运动特征,如TFT中不明显的步态运动学差异。

结论

基于视频的生物力学分析可以通过从人体运动中捕捉更敏感、特定疾病的结果来补充现有的功能运动评估。这项技术能够实现用于评估和监测运动功能的数字健康解决方案,补充传统的临床结局指标,以加强对与运动相关疾病的护理、管理和临床试验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f33c/12324206/403aee300c36/nihpp-2024.09.26.613967v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验