Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada.
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Lancet Digit Health. 2023 Jul;5(7):e435-e445. doi: 10.1016/S2589-7500(23)00067-5. Epub 2023 May 19.
Accurate prediction of side-specific extraprostatic extension (ssEPE) is essential for performing nerve-sparing surgery to mitigate treatment-related side-effects such as impotence and incontinence in patients with localised prostate cancer. Artificial intelligence (AI) might provide robust and personalised ssEPE predictions to better inform nerve-sparing strategy during radical prostatectomy. We aimed to develop, externally validate, and perform an algorithmic audit of an AI-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA).
Each prostatic lobe was treated as an individual case such that each patient contributed two cases to the overall cohort. SEPERA was trained on 1022 cases from a community hospital network (Trillium Health Partners; Mississauga, ON, Canada) between 2010 and 2020. Subsequently, SEPERA was externally validated on 3914 cases across three academic centres: Princess Margaret Cancer Centre (Toronto, ON, Canada) from 2008 to 2020; L'Institut Mutualiste Montsouris (Paris, France) from 2010 to 2020; and Jules Bordet Institute (Brussels, Belgium) from 2015 to 2020. Model performance was characterised by area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), calibration, and net benefit. SEPERA was compared against contemporary nomograms (ie, Sayyid nomogram, Soeterik nomogram [non-MRI and MRI]), as well as a separate logistic regression model using the same variables included in SEPERA. An algorithmic audit was performed to assess model bias and identify common patient characteristics among predictive errors.
Overall, 2468 patients comprising 4936 cases (ie, prostatic lobes) were included in this study. SEPERA was well calibrated and had the best performance across all validation cohorts (pooled AUROC of 0·77 [95% CI 0·75-0·78] and pooled AUPRC of 0·61 [0·58-0·63]). In patients with pathological ssEPE despite benign ipsilateral biopsies, SEPERA correctly predicted ssEPE in 72 (68%) of 106 cases compared with the other models (47 [44%] in the logistic regression model, none in the Sayyid model, 13 [12%] in the Soeterik non-MRI model, and five [5%] in the Soeterik MRI model). SEPERA had higher net benefit than the other models to predict ssEPE, enabling more patients to safely undergo nerve-sparing. In the algorithmic audit, no evidence of model bias was observed, with no significant difference in AUROC when stratified by race, biopsy year, age, biopsy type (systematic only vs systematic and MRI-targeted biopsy), biopsy location (academic vs community), and D'Amico risk group. According to the audit, the most common errors were false positives, particularly for older patients with high-risk disease. No aggressive tumours (ie, grade >2 or high-risk disease) were found among false negatives.
We demonstrated the accuracy, safety, and generalisability of using SEPERA to personalise nerve-sparing approaches during radical prostatectomy.
None.
准确预测侧特异性前列腺外延伸(ssEPE)对于进行神经保留手术以减轻局部前列腺癌患者治疗相关副作用(如阳痿和尿失禁)至关重要。人工智能(AI)可能提供强大且个性化的 ssEPE 预测,以更好地为根治性前列腺切除术中的神经保留策略提供信息。我们旨在开发、外部验证和进行基于人工智能的侧特异性前列腺外延伸风险评估工具(SEPERA)的算法审核。
将每个前列腺叶视为一个独立的病例,因此每个患者为整个队列贡献两个病例。SEPERA 在 2010 年至 2020 年期间接受了来自社区医院网络(加拿大密西沙加的翠湖健康合作伙伴)的 1022 例患者的数据训练。随后,SEPERA 在三个学术中心的 3914 例患者中进行了外部验证:2008 年至 2020 年期间的玛格丽特公主癌症中心(加拿大安大略省多伦多);2010 年至 2020 年期间的蒙苏里斯互助研究所(法国巴黎);以及 2015 年至 2020 年期间的朱尔·博尔德研究所(比利时布鲁塞尔)。模型性能通过接受者操作特征曲线下的面积(AUROC)、精度召回曲线下的面积(AUPRC)、校准和净收益来描述。SEPERA 与当代列线图(即 Sayyid 列线图、Soeterik 列线图[非 MRI 和 MRI])以及使用 SEPERA 中包含的相同变量的单独逻辑回归模型进行了比较。进行了算法审核,以评估模型偏差并确定预测错误中常见的患者特征。
总的来说,这项研究共纳入了 2468 名患者,共 4936 例(即前列腺叶)。SEPERA 在所有验证队列中的表现都很好,校准度也很高(AUROC 为 0.77[95%CI 0.75-0.78],AUPRC 为 0.61[0.58-0.63])。在尽管同侧活检为良性但存在病理性 ssEPE 的患者中,SEPERA 在 106 例中有 72 例(68%)正确预测了 ssEPE,而其他模型的预测结果为 47 例(44%)(逻辑回归模型)、无(Soeterik 非 MRI 模型)、13 例(12%)(Soeterik MRI 模型)和 5 例(5%)(Soeterik 模型)。与其他模型相比,SEPERA 具有更高的净收益,可以使更多的患者安全地接受神经保留手术。在算法审核中,没有发现模型偏差的证据,当按种族、活检年份、年龄、活检类型(仅系统活检与系统和 MRI 靶向活检)、活检部位(学术与社区)和 D'Amico 风险组进行分层时,AUROC 没有显著差异。根据审核结果,最常见的错误是假阳性,特别是对于患有高危疾病的老年患者。假阴性中未发现侵袭性肿瘤(即,Gleason 评分>2 或高危疾病)。
我们证明了使用 SEPERA 为根治性前列腺切除术中的神经保留方法提供个性化信息的准确性、安全性和普遍性。
无。