Suppr超能文献

受激拉曼组织学与人工智能为前列腺癌根治术手术切缘提供近实时解读。

Stimulated Raman Histology and Artificial Intelligence Provide Near Real-Time Interpretation of Radical Prostatectomy Surgical Margins.

作者信息

Mannas Miles P, Deng Fang-Ming, Ion-Margineanu Adrian, Freudiger Christian, Lough Lea, Huang William, Wysock James, Huang Richard, Pastore Steve, Jones Derek, Hoskoppal Deepthi, Melamed Jonathan, Orringer Daniel A, Taneja Samir S

机构信息

Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Vancouver Prostate Centre, Vancouver, British Columbia, Canada.

出版信息

J Urol. 2025 May;213(5):609-616. doi: 10.1097/JU.0000000000004393. Epub 2024 Dec 17.

Abstract

PURPOSE

Balancing surgical margins and functional outcomes is crucial during radical prostatectomy for prostate cancer. Stimulated Raman histology (SRH) is a novel, real-time imaging technique that provides histologic images of fresh, unprocessed, and unstained tissue within minutes, which can be interpreted by either humans or artificial intelligence.

MATERIALS AND METHODS

Twenty-two participants underwent robotic-assisted laparoscopic radical prostatectomy (RALP) with intraoperative SRH surgical bed assessment. Surgeons resected and imaged surgical bed tissue using SRH and adjusted treatment accordingly. An SRH convolutional neural network was developed and tested on 10 consecutive participants. The accuracy, sensitivity, and specificity of the surgical team's interpretation were compared with final histopathologic assessment.

RESULTS

A total of 121 SRH periprostatic surgical bed tissue (PSBT) assessments were conducted, an average of 5.5 per participant. The accuracy of the surgical team's SRH interpretation of resected PSBT samples was 98%, with 83% sensitivity and 99% specificity. Intraoperative SRH assessment identified 43% of participants with a pathologic positive surgical margin intraoperatively. PSBT assessment using the convolutional neural network demonstrated no overlap in tumor probability prediction between benign and tumor infiltrated samples, with mean 0.30% (IQR, 0.10%-0.43%) and 26% (IQR, 18%-34%, < .005), respectively.

CONCLUSIONS

SRH demonstrates potential as a valuable tool for real-time intraoperative assessment of surgical margins during RALP. This technique may improve nerve-sparing surgery and facilitate decision-making for further resection, reducing the risk of positive surgical margins and minimizing the risk of recurrence. Further studies with larger cohorts and longer follow-up periods are warranted to confirm the benefits of SRH in RALP.

摘要

目的

在前列腺癌根治性前列腺切除术中,平衡手术切缘和功能结果至关重要。受激拉曼组织学(SRH)是一种新型的实时成像技术,可在数分钟内提供新鲜、未处理和未染色组织的组织学图像,这些图像可由人类或人工智能进行解读。

材料与方法

22名参与者接受了机器人辅助腹腔镜根治性前列腺切除术(RALP),术中使用SRH对手术床进行评估。外科医生使用SRH切除并成像手术床组织,并据此调整治疗方案。开发了一个SRH卷积神经网络,并在连续10名参与者身上进行了测试。将手术团队解读的准确性、敏感性和特异性与最终组织病理学评估进行比较。

结果

共对121个SRH前列腺周围手术床组织(PSBT)进行了评估,每位参与者平均5.5个。手术团队对切除的PSBT样本进行SRH解读的准确性为98%,敏感性为83%,特异性为99%。术中SRH评估在术中识别出43%的手术切缘病理阳性参与者。使用卷积神经网络进行的PSBT评估显示,良性和肿瘤浸润样本之间的肿瘤概率预测没有重叠,平均值分别为0.30%(IQR,0.10%-0.43%)和26%(IQR,18%-34%,P<.005)。

结论

SRH显示出作为RALP术中实时评估手术切缘的有价值工具的潜力。该技术可能会改善保留神经手术,并有助于进一步切除的决策制定,降低手术切缘阳性的风险,并将复发风险降至最低。有必要进行更大样本量和更长随访期的进一步研究,以证实SRH在RALP中的益处。

相似文献

本文引用的文献

8
Cancer Statistics, 2021.癌症统计数据,2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验