Guerreiro João, Garriga Roger, Lozano Bagén Toni, Sharma Brihat, Karnik Niranjan S, Matić Aleksandar
Koa Health, Barcelona, Spain.
Universitat Pompeu Fabra, Department of Information and Communication Technologies, Barcelona, Spain.
NPJ Digit Med. 2024 Sep 9;7(1):227. doi: 10.1038/s41746-024-01203-8.
Transferring and replicating predictive algorithms across healthcare systems constitutes a unique yet crucial challenge that needs to be addressed to enable the widespread adoption of machine learning in healthcare. In this study, we explored the impact of important differences across healthcare systems and the associated Electronic Health Records (EHRs) on machine-learning algorithms to predict mental health crises, up to 28 days in advance. We evaluated both the transferability and replicability of such machine learning models, and for this purpose, we trained six models using features and methods developed on EHR data from the Birmingham and Solihull Mental Health NHS Foundation Trust in the UK. These machine learning models were then used to predict the mental health crises of 2907 patients seen at the Rush University System for Health in the US between 2018 and 2020. The best one was trained on a combination of US-specific structured features and frequency features from anonymized patient notes and achieved an AUROC of 0.837. A model with comparable performance, originally trained using UK structured data, was transferred and then tuned using US data, achieving an AUROC of 0.826. Our findings establish the feasibility of transferring and replicating machine learning models to predict mental health crises across diverse hospital systems.
在不同医疗系统之间转移和复制预测算法是一项独特而关键的挑战,若要在医疗保健领域广泛应用机器学习,就必须应对这一挑战。在本研究中,我们探讨了不同医疗系统以及相关电子健康记录(EHR)之间的重要差异对机器学习算法预测心理健康危机(提前多达28天)的影响。我们评估了此类机器学习模型的可转移性和可复制性,为此,我们使用英国伯明翰和索利赫尔国民保健服务基金会信托基金的EHR数据开发的特征和方法训练了六个模型。然后,这些机器学习模型被用于预测2018年至2020年期间在美国拉什大学健康系统就诊的2907名患者的心理健康危机。表现最佳的模型是基于美国特定的结构化特征和匿名患者记录中的频率特征进行训练的,其曲线下面积(AUROC)达到了0.837。一个最初使用英国结构化数据训练且性能相当的模型被转移过来,然后使用美国数据进行调整,其AUROC为0.826。我们的研究结果证实了跨不同医院系统转移和复制机器学习模型以预测心理健康危机的可行性。