Vaneeckhaute Ewoud, Tyburn Jean-Max, Kempf James G, Martens Johan A, Breynaert Eric
COK-kat, Centre for Surface Chemistry and Catalysis-Characterization and Application Team, KU Leuven, Celestijnenlaan 200F, box 2461, Leuven, B-3001, Belgium.
NMRCoRe, NMR/X-Ray Platform for Convergence Research, KU Leuven, Celestijnenlaan 200F, box 2461, Leuven, B-3001, Belgium.
Adv Sci (Weinh). 2023 Aug;10(23):e2207112. doi: 10.1002/advs.202207112. Epub 2023 May 21.
Amino acids (AAs) and ammonia are metabolic markers essential for nitrogen metabolism and cell regulation in both plants and humans. NMR provides interesting opportunities to investigate these metabolic pathways, yet lacks sensitivity, especially in case of N. In this study, spin order embedded in p-H is used to produce on-demand reversible hyperpolarization in N of pristine alanine and ammonia under ambient protic conditions directly in the NMR spectrometer. This is made possible by designing a mixed-ligand Ir-catalyst, selectively ligating the amino group of AA by exploiting ammonia as a strongly competitive co-ligand and preventing deactivation of Ir by bidentate ligation of AA. The stereoisomerism of the catalyst complexes is determined by hydride fingerprinting using H/D scrambling of the associated N-functional groups on the catalyst (i.e., isotopological fingerprinting), and unravelled by 2D-ZQ-NMR. Monitoring the transfer of spin order from p-H to N nuclei of ligated and free alanine and ammonia targets using SABRE-INEPT with variable exchange delays pinpoints the monodentate elucidated catalyst complexes to be most SABRE active. Also RF-spin locking (SABRE-SLIC) enables transfer of hyperpolarization to N. The presented high-field approach can be a valuable alternative to SABRE-SHEATH techniques since the obtained catalytic insights (stereochemistry and kinetics) will remain valid at ultra-low magnetic fields.
氨基酸(AAs)和氨是植物和人类氮代谢及细胞调节所必需的代谢标志物。核磁共振(NMR)为研究这些代谢途径提供了有趣的机会,但缺乏灵敏度,尤其是对氮而言。在本研究中,质子化氢(p-H)中嵌入的自旋序用于在NMR光谱仪中,在环境质子条件下直接对原始丙氨酸和氨中的氮进行按需可逆超极化。这通过设计一种混合配体铱催化剂得以实现,该催化剂利用氨作为强竞争性共配体选择性地连接氨基酸的氨基,并防止因氨基酸的双齿连接使铱失活。催化剂配合物的立体异构由使用催化剂上相关氮官能团的氢/氘(H/D) scrambling的氢化物指纹图谱确定(即同位素拓扑指纹图谱),并通过二维零量子核磁共振(2D-ZQ-NMR)解析。使用具有可变交换延迟的SABRE-INEPT监测自旋序从p-H到连接和游离丙氨酸及氨靶标的氮核的转移,确定单齿阐明的催化剂配合物具有最高的SABRE活性。射频自旋锁定(SABRE-SLIC)也能使超极化转移到氮。所提出的高场方法可以成为SABRE-SHEATH技术的有价值替代方案,因为所获得的催化见解(立体化学和动力学)在超低磁场下仍然有效。