Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
Technical University Darmstadt, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Alarich-Weiss-Strasse 8, 64287, Darmstadt, Germany.
Angew Chem Int Ed Engl. 2021 Oct 25;60(44):23496-23507. doi: 10.1002/anie.202100109. Epub 2021 Aug 13.
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
核磁共振(NMR)已成为生化和生物医学研究的通用方法,包括代谢组学、蛋白质组学和磁共振成像(MRI)。通过增加选定分子的信号,核自旋的极化大大扩展了 NMR 和 MRI 的应用范围(例如,固态 NMR 的极化和代谢活体成像)。仲氢(pH2)提供了一种快速且具有成本效益的方法来实现极化,在过去的十年中,已经取得了广泛的进展,包括新示踪剂、催化剂和转移方法的合成。目前已实现极化的分子包括氨基酸,这对许多应用都非常有意义。在这里,我们概述了氨基酸和肽的极化的最新文献和进展。