Suppr超能文献

非对比计算机断层扫描特征可预测脑室内出血的进展。

Non-contrast computed tomography features predict intraventricular hemorrhage growth.

机构信息

Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität Zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.

Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany.

出版信息

Eur Radiol. 2023 Nov;33(11):7807-7817. doi: 10.1007/s00330-023-09707-9. Epub 2023 May 22.

Abstract

OBJECTIVES

Non-contrast computed tomography (NCCT) markers are robust predictors of parenchymal hematoma expansion in intracerebral hemorrhage (ICH). We investigated whether NCCT features can also identify ICH patients at risk of intraventricular hemorrhage (IVH) growth.

METHODS

Patients with acute spontaneous ICH admitted at four tertiary centers in Germany and Italy were retrospectively included from January 2017 to June 2020. NCCT markers were rated by two investigators for heterogeneous density, hypodensity, black hole sign, swirl sign, blend sign, fluid level, island sign, satellite sign, and irregular shape. ICH and IVH volumes were semi-manually segmented. IVH growth was defined as IVH expansion > 1 mL (eIVH) or any delayed IVH (dIVH) on follow-up imaging. Predictors of eIVH and dIVH were explored with multivariable logistic regression. Hypothesized moderators and mediators were independently assessed in PROCESS macro models.

RESULTS

A total of 731 patients were included, of whom 185 (25.31%) suffered from IVH growth, 130 (17.78%) had eIVH, and 55 (7.52%) had dIVH. Irregular shape was significantly associated with IVH growth (OR 1.68; 95%CI [1.16-2.44]; p = 0.006). In the subgroup analysis stratified by the IVH growth type, hypodensities were significantly associated with eIVH (OR 2.06; 95%CI [1.48-2.64]; p = 0.015), whereas irregular shape (OR 2.72; 95%CI [1.91-3.53]; p = 0.016) in dIVH. The association between NCCT markers and IVH growth was not mediated by parenchymal hematoma expansion.

CONCLUSIONS

NCCT features identified ICH patients at a high risk of IVH growth. Our findings suggest the possibility to stratify the risk of IVH growth with baseline NCCT and might inform ongoing and future studies.

CLINICAL RELEVANCE STATEMENT

Non-contrast CT features identified ICH patients at a high risk of intraventricular hemorrhage growth with subtype-specific differences. Our findings may assist in the risk stratification of intraventricular hemorrhage growth with baseline CT and might inform ongoing and future clinical studies.

KEY POINTS

• NCCT features identified ICH patients at a high risk of IVH growth with subtype-specific differences. • The effect of NCCT features was not moderated by time and location or indirectly mediated by hematoma expansion. • Our findings may assist in the risk stratification of IVH growth with baseline NCCT and might inform ongoing and future studies.

摘要

目的

非对比计算机断层扫描(NCCT)标志物是颅内出血(ICH)患者血肿扩大的有力预测指标。本研究旨在探讨 NCCT 特征是否也能识别ICH 患者发生脑室内出血(IVH)增长的风险。

方法

本研究回顾性纳入了 2017 年 1 月至 2020 年 6 月期间德国和意大利的四家三级中心收治的急性自发性 ICH 患者。两名研究者分别对不均匀密度、低密度、黑洞征、漩涡征、混合征、液平、孤岛征、卫星征和不规则形状等 NCCT 标志物进行评分。采用半手动方法对 ICH 和 IVH 容积进行分割。ICH 患者发生 IVH 增长定义为 IVH 扩张>1mL(eIVH)或随访影像学上出现任何延迟性 IVH(dIVH)。采用多变量逻辑回归分析 IVH 增长的预测因素。使用 PROCESS 宏模型独立评估假设的调节因素和中介因素。

结果

共纳入 731 例患者,其中 185 例(25.31%)发生 IVH 增长,130 例(17.78%)发生 eIVH,55 例(7.52%)发生 dIVH。不规则形状与 IVH 增长显著相关(OR 1.68;95%CI [1.16-2.44];p=0.006)。在按 IVH 增长类型分层的亚组分析中,低密区与 eIVH 显著相关(OR 2.06;95%CI [1.48-2.64];p=0.015),而不规则形状与 dIVH 显著相关(OR 2.72;95%CI [1.91-3.53];p=0.016)。NCCT 标志物与 IVH 增长之间的关联不受血肿扩大的影响。

结论

NCCT 特征可识别出 IVH 增长风险较高的 ICH 患者。本研究结果提示可通过基线 NCCT 对 IVH 增长的风险进行分层,这可能为正在进行和未来的研究提供参考。

临床相关性声明

NCCT 特征可识别出 IVH 增长风险较高的 ICH 患者,且具有亚型特异性差异。本研究结果可能有助于通过基线 CT 对 IVH 增长进行风险分层,并为正在进行和未来的临床研究提供参考。

关键点

• NCCT 特征可识别出 IVH 增长风险较高的 ICH 患者,且具有亚型特异性差异。• NCCT 特征的影响不受时间和地点的调节,也不能通过血肿扩大间接介导。• 本研究结果可能有助于通过基线 NCCT 对 IVH 增长进行风险分层,并为正在进行和未来的研究提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59bc/10598100/5b1fdc2edd55/330_2023_9707_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验