Suppr超能文献

代谢物四氢生物蝶呤在多巴胺能神经元中的关键神经保护作用。

Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons.

作者信息

Cronin Shane J F, Yu Weonjin, Hale Ashley, Licht-Mayer Simon, Crabtree Mark J, Korecka Joanna A, Tretiakov Evgenii O, Sealey-Cardona Marco, Somlyay Mate, Onji Masahiro, An Meilin, Fox Jesse D, Turnes Bruna Lenfers, Gomez-Diaz Carlos, da Luz Scheffer Débora, Cikes Domagoj, Nagy Vanja, Weidinger Adelheid, Wolf Alexandra, Reither Harald, Chabloz Antoine, Kavirayani Anoop, Rao Shuan, Andrews Nick, Latremoliere Alban, Costigan Michael, Douglas Gillian, Freitas Fernando Cini, Pifl Christian, Walz Roger, Konrat Robert, Mahad Don J, Koslov Andrey V, Latini Alexandra, Isacson Ole, Harkany Tibor, Hallett Penelope J, Bagby Stefan, Woolf Clifford J, Channon Keith M, Je Hyunsoo Shawn, Penninger Josef M

机构信息

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.

Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.

出版信息

bioRxiv. 2023 May 8:2023.05.08.539795. doi: 10.1101/2023.05.08.539795.

Abstract

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

摘要

多巴反应性肌张力障碍(DRD)和帕金森病(PD)是由黑质纹状体多巴胺能神经元功能障碍引起的运动障碍。由于这些疾病的致残性,确定可药物作用的途径和生物标志物以指导治疗至关重要。最近的基因研究已确定四氢生物蝶呤(BH4)合成中的限速酶鸟苷三磷酸环化水解酶-1(GCH1)的变体是这些运动障碍的病因。在这里,我们表明,在小鼠和人类中脑样类器官中对BH4合成进行基因和药理学抑制可准确重现这些人类疾病的运动、行为和生化特征,表型的严重程度与BH4缺乏的程度相关。我们还表明,BH4缺乏会增加小鼠和PD人类细胞对几种与PD相关应激源的敏感性,导致更差的行为和生理结果。相反,BH4的基因和药理学增强可保护小鼠免受基因和化学诱导的与PD相关的应激源的影响。重要的是,提高BH4水平还可保护受PD影响个体的原代细胞和人类中脑样类器官(hMLOs)免受这些应激源的影响。从机制上讲,BH4不仅是多巴胺合成的必需辅因子,还独立调节酪氨酸羟化酶水平,防止铁死亡,清除线粒体ROS,维持神经元兴奋性并促进线粒体ATP生成,从而在多个临床前PD动物模型、人类多巴胺能中脑样类器官和受PD影响个体的原代细胞中增强线粒体适应性和细胞呼吸。我们的研究结果指出BH4途径是中脑多巴胺能神经元健康和功能的多种保护机制交叉点上的关键代谢程序,将其确定为PD的潜在治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验