Singleton S Parker, Timmermann Christopher, Luppi Andrea I, Eckernäs Emma, Roseman Leor, Carhart-Harris Robin L, Kuceyeski Amy
Department of Computational Biology, Cornell University, Ithaca, USA.
Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom.
bioRxiv. 2023 May 12:2023.05.11.540409. doi: 10.1101/2023.05.11.540409.
Psychedelics offer a profound window into the functioning of the human brain and mind through their robust acute effects on perception, subjective experience, and brain activity patterns. In recent work using a receptor-informed network control theory framework, we demonstrated that the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain's control energy landscape in a manner that covaries with more dynamic and entropic brain activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to be captured during a single resting-state fMRI scan. Using network control theory, which quantifies the amount of input necessary to drive transitions between functional brain states, we integrate brain structure and function to map the energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. Consistent with previous work, we find that global control energy is reduced following injection with DMT compared to placebo. We additionally show longitudinal trajectories of global control energy correlate with longitudinal trajectories of EEG signal diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these same relationships on a regional level and find that the spatial patterns of DMT's effects on these metrics are correlated with serotonin 2a receptor density (obtained from separately acquired PET data). Using receptor distribution and pharmacokinetic information, we were able to successfully recapitulate the effects of DMT on global control energy trajectories, demonstrating a proof-of-concept for the use of control models in predicting pharmacological intervention effects on brain dynamics.
通过对感知、主观体验和大脑活动模式产生强烈的急性影响,迷幻剂为深入了解人类大脑和思维的运作提供了一个重要窗口。在最近一项使用基于受体的网络控制理论框架的研究中,我们证明了血清素能迷幻剂麦角酸二乙酰胺(LSD)和裸盖菇素会以一种与更具动态性和熵性的大脑活动相关的方式,使大脑的控制能量格局趋于平坦。与作用持续数小时的LSD和裸盖菇素不同,血清素能迷幻剂N,N -二甲基色胺(DMT)能迅速诱导出一种深度沉浸式的意识改变状态,持续时间不到20分钟,从而可以在单次静息态功能磁共振成像(fMRI)扫描中捕捉到整个药物体验过程。利用网络控制理论(该理论量化驱动功能性脑状态之间转换所需的输入量),我们整合大脑结构和功能,绘制了14名在服用DMT和安慰剂期间接受fMRI扫描的个体的能量轨迹。与之前的研究一致,我们发现与安慰剂相比,注射DMT后全局控制能量降低。我们还表明,全局控制能量的纵向轨迹与脑电图信号多样性(一种熵的度量)的纵向轨迹以及药物强度的主观评分相关。我们在区域层面探究了这些相同的关系,发现DMT对这些指标的影响的空间模式与5 -羟色胺2a受体密度(从单独获取的正电子发射断层扫描(PET)数据中获得)相关。利用受体分布和药代动力学信息,我们能够成功重现DMT对全局控制能量轨迹的影响,为使用控制模型预测药物干预对脑动力学的影响提供了概念验证。