Suppr超能文献

基于公平性的新冠疫苗分配优化的回顾性分析

Retrospective Analysis of Equity-Based Optimization for COVID-19 Vaccine Allocation.

作者信息

Stafford Erin, Dimitrov Dobromir, Ceballos Rachel, Campelia Georgina, Matrajt Laura

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA.

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA.

出版信息

medRxiv. 2023 May 11:2023.05.08.23289679. doi: 10.1101/2023.05.08.23289679.

Abstract

Marginalized racial and ethnic groups in the United States were disproportionally affected by the COVID-19 pandemic. To study these disparities, we construct an age-and-race-stratified mathematical model of SARS-CoV-2 transmission fitted to age-and-race-stratified data from 2020 in Oregon and analyze counter-factual vaccination strategies in early 2021. We consider two racial groups: non-Hispanic White persons and persons belonging to BIPOC groups (including non-Hispanic Black persons, non-Hispanic Asian persons, non-Hispanic American Indian or Alaska Native persons, and Hispanic or Latino persons). We allocate a limited amount of vaccine to minimize overall disease burden (deaths or years of life lost), inequity in disease outcomes between racial groups (measured with five different metrics), or both. We find that, when allocating small amounts of vaccine (10% coverage), there is a trade-off between minimizing disease burden and minimizing inequity. Older age groups, who are at a greater risk of severe disease and death, are prioritized when minimizing measures of disease burden, and younger BIPOC groups, who face the most inequities, are prioritized when minimizing measures of inequity. The allocation strategies that minimize combinations of measures can produce middle-ground solutions that similarly improve both disease burden and inequity, but the trade-off can only be mitigated by increasing the vaccine supply. With enough resources to vaccinate 20% of the population the trade-off lessens, and with 30% coverage, we can optimize both equity and mortality. Our goal is to provide a race-conscious framework to quantify and minimize inequity that can be used for future pandemics and other public health interventions.

摘要

美国的边缘化种族和族裔群体受到新冠疫情的影响尤为严重。为了研究这些差异,我们构建了一个按年龄和种族分层的SARS-CoV-2传播数学模型,该模型与俄勒冈州2020年按年龄和种族分层的数据相匹配,并分析了2021年初的反事实疫苗接种策略。我们考虑两个种族群体:非西班牙裔白人以及属于BIPOC群体的人(包括非西班牙裔黑人、非西班牙裔亚洲人、非西班牙裔美洲印第安人或阿拉斯加原住民,以及西班牙裔或拉丁裔)。我们分配有限数量的疫苗,以尽量减少总体疾病负担(死亡人数或生命年损失)、种族群体之间疾病结果的不平等(用五种不同指标衡量),或两者兼顾。我们发现,在分配少量疫苗(覆盖率为10%)时,在尽量减少疾病负担和尽量减少不平等之间存在权衡。在尽量减少疾病负担指标时,优先考虑患重病和死亡风险更高的老年群体;在尽量减少不平等指标时,优先考虑面临最大不平等的年轻BIPOC群体。将各项指标的组合降至最低的分配策略可以产生折中的解决方案,同样改善疾病负担和不平等状况,但只有增加疫苗供应才能减轻这种权衡。有足够资源为20%的人口接种疫苗时,权衡会减少;覆盖率达到30%时,我们可以优化公平性和死亡率。我们的目标是提供一个考虑种族因素的框架,以量化和尽量减少不平等,可用于未来的疫情及其他公共卫生干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468d/10197793/b6257e91591e/nihpp-2023.05.08.23289679v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验