Suppr超能文献

利用多模态MRI数据预测弥漫性浸润性成人胶质瘤的甲基化类别。

Predicting methylation class from diffusely infiltrating adult gliomas using multimodality MRI data.

作者信息

Alom Zahangir, Tran Quynh T, Bag Asim K, Lucas John T, Orr Brent A

机构信息

Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

出版信息

Neurooncol Adv. 2023 Apr 19;5(1):vdad045. doi: 10.1093/noajnl/vdad045. eCollection 2023 Jan-Dec.

Abstract

BACKGROUND

Radiogenomic studies of adult-type diffuse gliomas have used magnetic resonance imaging (MRI) data to infer tumor attributes, including abnormalities such as IDH-mutation status and 1p19q deletion. This approach is effective but does not generalize to tumor types that lack highly recurrent alterations. Tumors have intrinsic DNA methylation patterns and can be grouped into stable methylation classes even when lacking recurrent mutations or copy number changes. The purpose of this study was to prove the principle that a tumor's DNA-methylation class could be used as a predictive feature for radiogenomic modeling.

METHODS

Using a custom DNA methylation-based classification model, molecular classes were assigned to diffuse gliomas in The Cancer Genome Atlas (TCGA) dataset. We then constructed and validated machine learning models to predict a tumor's methylation family or subclass from matched multisequence MRI data using either extracted radiomic features or directly from MRI images.

RESULTS

For models using extracted radiomic features, we demonstrated top accuracies above 90% for predicting IDH-glioma and GBM-IDHwt methylation families, IDH-mutant tumor methylation subclasses, or GBM-IDHwt molecular subclasses. Classification models utilizing MRI images directly demonstrated average accuracies of 80.6% for predicting methylation families, compared to 87.2% and 89.0% for differentiating IDH-mutated astrocytomas from oligodendrogliomas and glioblastoma molecular subclasses, respectively.

CONCLUSIONS

These findings demonstrate that MRI-based machine learning models can effectively predict the methylation class of brain tumors. Given appropriate datasets, this approach could generalize to most brain tumor types, expanding the number and types of tumors that could be used to develop radiomic or radiogenomic models.

摘要

背景

成人型弥漫性胶质瘤的放射基因组学研究利用磁共振成像(MRI)数据来推断肿瘤特征,包括异柠檬酸脱氢酶(IDH)突变状态和1p19q缺失等异常情况。这种方法是有效的,但并不适用于缺乏高度复发性改变的肿瘤类型。肿瘤具有内在的DNA甲基化模式,即使缺乏复发性突变或拷贝数变化,也可分为稳定的甲基化类别。本研究的目的是证明肿瘤的DNA甲基化类别可作为放射基因组建模的预测特征这一原理。

方法

使用基于DNA甲基化的定制分类模型,将分子类别分配给癌症基因组图谱(TCGA)数据集中的弥漫性胶质瘤。然后,我们构建并验证了机器学习模型,以使用提取的放射组学特征或直接从MRI图像中,根据匹配的多序列MRI数据预测肿瘤的甲基化家族或亚类。

结果

对于使用提取的放射组学特征的模型,我们在预测IDH胶质瘤和胶质母细胞瘤IDH野生型甲基化家族、IDH突变型肿瘤甲基化亚类或胶质母细胞瘤IDH野生型分子亚类方面,展示了超过90%的最高准确率。直接利用MRI图像的分类模型在预测甲基化家族方面的平均准确率为80.6%,相比之下,区分IDH突变型星形细胞瘤与少突胶质细胞瘤和胶质母细胞瘤分子亚类的准确率分别为87.2%和89.0%。

结论

这些发现表明,基于MRI的机器学习模型可以有效地预测脑肿瘤的甲基化类别。在有适当数据集的情况下,这种方法可以推广到大多数脑肿瘤类型,从而扩大可用于开发放射组学或放射基因组学模型的肿瘤数量和类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/382b/10195196/6248cee41f35/vdad045_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验