Suppr超能文献

3D ARCNN:一种用于减少肺结节假阳性的非对称残差 CNN。

3D ARCNN: An Asymmetric Residual CNN for False Positive Reduction in Pulmonary Nodule.

出版信息

IEEE Trans Nanobioscience. 2024 Jan;23(1):18-25. doi: 10.1109/TNB.2023.3278706. Epub 2024 Jan 3.

Abstract

Lung cancer is with the highest morbidity and mortality, and detecting cancerous lesions early is essential for reducing mortality rates. Deep learning-based lung nodule detection techniques have shown better scalability than traditional methods. However, pulmonary nodule test results often include a number of false positive outcomes. In this paper, we present a novel asymmetric residual network called 3D ARCNN that leverages 3D features and spatial information of lung nodules to improve classification performance. The proposed framework uses an internally cascaded multi-level residual model for fine-grained learning of lung nodule features and multi-layer asymmetric convolution to address the problem of large neural network parameters and poor reproducibility. We evaluate the proposed framework on the LUNA16 dataset and achieve a high detection sensitivity of 91.6%, 92.7%, 93.2%, and 95.8% for 1, 2, 4, and 8 false positives per scan, respectively, with an average CPM index of 0.912. Quantitative and qualitative evaluations demonstrate the superior performance of our framework compared to existing methods. 3D ARCNN framework can effectively reduce the possibility of false positive lung nodules in the clinical.

摘要

肺癌的发病率和死亡率最高,早期发现癌性病变对于降低死亡率至关重要。基于深度学习的肺结节检测技术比传统方法具有更好的可扩展性。然而,肺结节测试结果通常包含许多假阳性结果。在本文中,我们提出了一种名为 3D ARCNN 的新型非对称残差网络,该网络利用肺结节的 3D 特征和空间信息来提高分类性能。所提出的框架使用内部级联多级残差模型进行肺结节特征的细粒度学习,并采用多层非对称卷积来解决神经网络参数大、可重复性差的问题。我们在 LUNA16 数据集上评估了所提出的框架,在每个扫描 1、2、4 和 8 个假阳性的情况下,分别实现了 91.6%、92.7%、93.2%和 95.8%的高检测灵敏度,平均 CPM 指数为 0.912。定量和定性评估表明,与现有方法相比,我们的框架具有更好的性能。3D ARCNN 框架可以有效地降低临床中肺结节假阳性的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验