Suppr超能文献

一种用于放射肿瘤学中自动肿瘤轮廓勾画的语言视觉模型方法。

A Language Vision Model Approach for Automated Tumor Contouring in Radiation Oncology.

作者信息

Luo Yi, Hooshangnejad Hamed, Feng Xue, Huang Gaofeng, Chen Xiaojian, Zhang Rui, Chen Quan, Ngwa Wil, Ding Kai

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA.

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA.

出版信息

Bioengineering (Basel). 2025 Jul 31;12(8):835. doi: 10.3390/bioengineering12080835.

Abstract

Lung cancer ranks as the leading cause of cancer-related mortality worldwide. The complexity of tumor delineation, crucial for radiation therapy, requires expertise often unavailable in resource-limited settings. Artificial Intelligence (AI), particularly with advancements in deep learning (DL) and natural language processing (NLP), offers potential solutions yet is challenged by high false positive rates. The Oncology Contouring Copilot (OCC) system is developed to leverage oncologist expertise for precise tumor contouring using textual descriptions, aiming to increase the efficiency of oncological workflows by combining the strengths of AI with human oversight. Our OCC system initially identifies nodule candidates from CT scans. Employing Language Vision Models (LVMs) like GPT-4V, OCC then effectively reduces false positives with clinical descriptive texts, merging textual and visual data to automate tumor delineation, designed to elevate the quality of oncology care by incorporating knowledge from experienced domain experts. The deployment of the OCC system resulted in a 35.0% reduction in the false discovery rate, a 72.4% decrease in false positives per scan, and an F1-score of 0.652 across our dataset for unbiased evaluation. OCC represents a significant advance in oncology care, particularly through the use of the latest LVMs, improving contouring results by (1) streamlining oncology treatment workflows by optimizing tumor delineation and reducing manual processes; (2) offering a scalable and intuitive framework to reduce false positives in radiotherapy planning using LVMs; (3) introducing novel medical language vision prompt techniques to minimize LVM hallucinations with ablation study; and (4) conducting a comparative analysis of LVMs, highlighting their potential in addressing medical language vision challenges.

摘要

肺癌是全球癌症相关死亡的主要原因。肿瘤轮廓描绘的复杂性对放射治疗至关重要,而在资源有限的环境中往往缺乏相关专业知识。人工智能(AI),特别是随着深度学习(DL)和自然语言处理(NLP)的进步,提供了潜在的解决方案,但却受到高假阳性率的挑战。肿瘤轮廓绘制助手(OCC)系统的开发旨在利用肿瘤学家的专业知识,通过文本描述进行精确的肿瘤轮廓绘制,旨在通过将人工智能的优势与人工监督相结合来提高肿瘤学工作流程的效率。我们的OCC系统最初从CT扫描中识别结节候选对象。然后,OCC使用诸如GPT-4V之类的语言视觉模型(LVM),通过临床描述性文本有效地减少假阳性,将文本和视觉数据合并以自动进行肿瘤轮廓描绘,旨在通过纳入经验丰富的领域专家的知识来提高肿瘤学护理质量。在我们用于无偏评估的数据集中,OCC系统的部署使错误发现率降低了35.0%,每次扫描的假阳性减少了72.4%,F1分数为0.652。OCC代表了肿瘤学护理方面的重大进步,特别是通过使用最新的LVM,通过以下方式改善轮廓绘制结果:(1)通过优化肿瘤轮廓描绘和减少人工流程来简化肿瘤学治疗工作流程;(2)提供一个可扩展且直观的框架,以减少使用LVM进行放射治疗计划时的假阳性;(3)引入新颖的医学语言视觉提示技术,通过消融研究将LVM幻觉降至最低;(4)对LVM进行比较分析,突出它们在应对医学语言视觉挑战方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe1/12383427/c5ec3689bdb8/bioengineering-12-00835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验