Graduate School of Science, Nagoya City University, Nagoya, Japan.
RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Sci Rep. 2023 May 22;13(1):7109. doi: 10.1038/s41598-023-34232-6.
Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.
近年来,显微镜技术,特别是电子显微镜技术的进步,通过获取大量高精度的 3D 细胞图像堆栈,正在改变生物医学研究。为了研究大脑等器官中的细胞形态和连接性,科学家需要进行细胞分割,即从 3D 图像中提取出不同形状和大小的单个细胞区域。这是一项具有挑战性的工作,因为在实际的生物医学研究中经常会遇到不清晰的图像:在许多情况下,即使使用先进的深度学习方法,自动分割方法也不可避免地会在分割结果中包含许多错误。为了有效地分析 3D 细胞图像,需要一种结合强大的深度学习技术和后处理能力的半自动软件解决方案,以生成更准确的自动分割,并结合手动校正。为了解决这一差距,我们开发了 Seg2Link,它将深度学习预测作为输入,并使用分水岭 2D+跨切片链接生成比以前的方法更准确的自动分割。此外,它还提供了各种手动校正工具,对于校正 3D 分割结果中的错误至关重要。此外,我们的软件经过优化,可以有效地处理来自不同生物体的大型 3D 图像。因此,Seg2Link 为科学家研究 3D 图像堆栈中的细胞形态和连接性提供了一种实用的解决方案。