College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Small. 2023 Sep;19(38):e2303636. doi: 10.1002/smll.202303636. Epub 2023 May 22.
Clinical treatment of osteosarcoma encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To develop an advanced artificial bone substitute that can achieve synergistic bone regeneration and tumor therapy for osteosarcoma treatment, a multifunctional calcium phosphate composite enabled by incorporation of bioactive FePSe -nanosheets within the cryogenic-3D-printed α-tricalcium phosphate scaffold (TCP-FePSe ) is explored. The TCP-FePSe scaffold exhibits remarkable tumor ablation ability due to the excellent NIR-II (1064 nm) photothermal property of FePSe -nanosheets. Moreover, the biodegradable TCP-FePSe scaffold can release selenium element to suppress tumor recurrence by activating of the caspase-dependent apoptosis pathway. In a subcutaneous tumor model, it is demonstrated that tumors can be efficiently eradicated via the combination treatment with local photothermal ablation and the antitumor effect of selenium element. Meanwhile, in a rat calvarial bone defect model, the superior angiogenesis and osteogenesis induced by TCP-FePSe scaffold have been observed in vivo. The TCP-FePSe scaffold possesses improved capability to promote the repair of bone defects via vascularized bone regeneration, which is induced by the bioactive ions of Fe, Ca, and P released during the biodegradation of the implanted scaffolds. The TCP-FePSe composite scaffolds fabricated by cryogenic-3D-printing illustrate a distinctive strategy to construct multifunctional platform for osteosarcoma treatment.
临床治疗骨肉瘤会遇到术后肿瘤复发和广泛骨缺损的巨大挑战。为了开发一种先进的人工骨替代品,使其能够协同促进骨再生和骨肉瘤治疗的肿瘤治疗,研究了一种多功能磷酸钙复合材料,该复合材料通过在低温 3D 打印的 α-磷酸三钙支架(TCP-FePSe)内掺入生物活性的 FePSe 纳米片来实现。由于 FePSe 纳米片具有优异的近红外二区(1064nm)光热性能,TCP-FePSe 支架表现出显著的肿瘤消融能力。此外,可生物降解的 TCP-FePSe 支架可以通过激活 caspase 依赖性细胞凋亡途径释放硒元素来抑制肿瘤复发。在皮下肿瘤模型中,通过局部光热消融与硒元素的抗肿瘤作用相结合的联合治疗,证明可以有效地消除肿瘤。同时,在大鼠颅骨骨缺损模型中,体内观察到 TCP-FePSe 支架诱导的优异血管生成和成骨作用。TCP-FePSe 支架通过血管化骨再生来促进骨缺损修复的能力得到了提高,这是由植入支架生物降解过程中释放的 Fe、Ca 和 P 的生物活性离子引起的。通过低温 3D 打印制造的 TCP-FePSe 复合材料支架为骨肉瘤治疗构建多功能平台提供了一种独特的策略。