文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用近红外光治疗骨肿瘤的光热疗法进展。

Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors.

作者信息

Xie Mengzhang, Gong Taojun, Wang Yitian, Li Zhuangzhuang, Lu Minxun, Luo Yi, Min Li, Tu Chongqi, Zhang Xingdong, Zeng Qin, Zhou Yong

机构信息

Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.

National Engineering Biomaterials, Sichuan University Research Center for Chengdu, Chengdu 610064, China.

出版信息

Int J Mol Sci. 2024 Apr 9;25(8):4139. doi: 10.3390/ijms25084139.


DOI:10.3390/ijms25084139
PMID:38673726
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11050412/
Abstract

Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents. This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents. Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemotherapy. Consequently, the management of bone tumors and bone regeneration poses significant clinical challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal invasiveness and high selectivity. However, key challenges have limited its widespread clinical use. Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or immunotherapies also present avenues for improvement. In this review, we provide an overview of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT), along with current research directions in the context of bone tumors, including (1) target strategies, (2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for photothermal therapy and bone regeneration. We delve into the pros and cons of these combination methods and explore current research focal points. Lastly, we address the challenges and prospects of photothermal combination therapy.

摘要

骨肿瘤,尤其是骨肉瘤,在儿童和青少年中很常见。这种疾病已成为青少年癌症相关死亡的第二大常见原因。传统的治疗方法包括广泛的手术切除、放疗和化疗。因此,骨肿瘤的治疗和骨再生带来了重大的临床挑战。光热肿瘤治疗因其微创性和高选择性而备受关注。然而,关键挑战限制了其广泛的临床应用。通过靶向或局部激活提高光敏剂的肿瘤特异性有可能在减少不良反应的情况下取得更好的效果。与化疗或免疫疗法的联合也提供了改进的途径。在这篇综述中,我们概述了旨在克服光热疗法(PTT)局限性的最新策略,以及在骨肿瘤背景下的当前研究方向,包括(1)靶向策略,(2)光热疗法与多种疗法(免疫疗法、化疗、化学动力学疗法、磁疗法和光动力疗法)联合,以及(3)用于光热疗法和骨再生的双功能支架。我们深入探讨了这些联合方法的优缺点,并探索了当前的研究重点。最后,我们阐述了光热联合疗法的挑战和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/bfdcf78b2b88/ijms-25-04139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/c45544e9794c/ijms-25-04139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/4e60804f6237/ijms-25-04139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/06ba3e748518/ijms-25-04139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/a84f45748e49/ijms-25-04139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/21844b3f3da5/ijms-25-04139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/bfdcf78b2b88/ijms-25-04139-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/c45544e9794c/ijms-25-04139-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/4e60804f6237/ijms-25-04139-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/06ba3e748518/ijms-25-04139-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/a84f45748e49/ijms-25-04139-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/21844b3f3da5/ijms-25-04139-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed9/11050412/bfdcf78b2b88/ijms-25-04139-g006.jpg

相似文献

[1]
Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors.

Int J Mol Sci. 2024-4-9

[2]
Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment.

Int J Pharm. 2024-11-15

[3]
Clinical development and potential of photothermal and photodynamic therapies for cancer.

Nat Rev Clin Oncol. 2020-11

[4]
Progress of Phototherapy Applications in the Treatment of Bone Cancer.

Int J Mol Sci. 2021-10-21

[5]
A porous material excited by near-infrared light for photo/chemodynamic and photothermal dual-mode combination therapy.

J Mater Chem B. 2020-12-14

[6]
Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes.

J Nanobiotechnology. 2023-9-27

[7]
NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review.

Theranostics. 2020

[8]
Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy.

Acta Biomater. 2022-7-1

[9]
Application of phototherapeutic-based nanoparticles in colorectal cancer.

Int J Biol Sci. 2021

[10]
Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment.

ACS Appl Mater Interfaces. 2021-3-10

引用本文的文献

[1]
Recent advances in phototherapy-based nanomedicine of lymphoma.

Mater Today Bio. 2025-7-3

[2]
A comprehensive modeling on thermal damage in tumor hyperthermia therapies using magneto-plasmonic nanocomposite.

Sci Rep. 2025-7-15

[3]
Metal-organic frameworks-loaded indocyanine green for enhanced phototherapy: a comprehensive review.

Front Bioeng Biotechnol. 2025-5-27

[4]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[5]
Enhancing Photothermal Therapy Against Breast Cancer Cells by Modulating the End Point of Gold Shell-Isolated Nanoparticles Using Nanostraw-Assisted Injection.

ACS Appl Mater Interfaces. 2025-5-14

[6]
Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy.

Nanomedicine (Lond). 2025-5

[7]
Functionalized zeolite regulates bone metabolic microenvironment.

Mater Today Bio. 2025-2-5

[8]
Pt-Au Nanoparticles in Combination with Near-Infrared-Based Hyperthermia Increase the Temperature and Impact on the Viability and Immune Phenotype of Human Hepatocellular Carcinoma Cells.

Int J Mol Sci. 2025-2-13

[9]
Nanotechnology-Based Strategies for Safe and Effective Immunotherapy.

Molecules. 2024-12-11

[10]
Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering.

J Funct Biomater. 2024-8-23

本文引用的文献

[1]
Injectable Magnetic Hydrogel Filler for Synergistic Bone Tumor Hyperthermia Chemotherapy.

ACS Appl Bio Mater. 2024-3-18

[2]
Composite Nanomaterials of Conjugated Polymers and Upconversion Nanoparticles for NIR-Triggered Photodynamic/Photothermal Synergistic Cancer Therapy.

ACS Appl Mater Interfaces. 2023-11-17

[3]
Synergized photothermal therapy and magnetic field induced hyperthermia via bismuthene for lung cancer combinatorial treatment.

Mater Today Bio. 2023-9-29

[4]
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.

Pharmaceutics. 2023-9-30

[5]
The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy.

Front Bioeng Biotechnol. 2023-10-2

[6]
A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration.

J Colloid Interface Sci. 2023-12-15

[7]
Black phosphorus quantum dots camouflaged with platelet-osteosarcoma hybrid membrane and doxorubicin for combined therapy of osteosarcoma.

J Nanobiotechnology. 2023-7-28

[8]
Engineering a triple-functional magnetic gel driving mutually-synergistic mild hyperthermia-starvation therapy for osteosarcoma treatment and augmented bone regeneration.

J Nanobiotechnology. 2023-6-26

[9]
Supercritical CO-assisted fabrication of CM-PDA/SF/nHA nanofibrous scaffolds for bone regeneration and chemo-photothermal therapy against osteosarcoma.

Biomater Sci. 2023-7-25

[10]
Comparison of the Penetration Depth of 905 nm and 1064 nm Laser Light in Surface Layers of Biological Tissue Ex Vivo.

Biomedicines. 2023-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索