Laboratory for Biomolecular Discovery and Engineering, Department of Biology, KU Leuven, 3001, Heverlee, Belgium.
VIB-KU Leuven Center for Microbiology, 3001, Heverlee, Belgium.
Angew Chem Int Ed Engl. 2023 Aug 21;62(34):e202304476. doi: 10.1002/anie.202304476. Epub 2023 Jun 30.
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are modular megaenzymes that employ unusual catalytic domains to assemble diverse bioactive natural products. One such PKS is responsible for the biosynthesis of the oximidine anticancer agents, oxime-substituted benzolactone enamides that inhibit vacuolar H -ATPases. Here, we describe the identification of the oximidine gene cluster in Pseudomonas baetica and the characterization of four novel oximidine variants, including a structurally simpler intermediate that retains potent anticancer activity. Using a combination of in vivo, in vitro and computational approaches, we experimentally elucidate the oximidine biosynthetic pathway and reveal an unprecedented mechanism for O-methyloxime formation. We show that this process involves a specialized monooxygenase and methyltransferase domain and provide insight into their activity, mechanism and specificity. Our findings expand the catalytic capabilities of trans-AT PKSs and identify potential strategies for the production of novel oximidine analogues.
细菌转酰基转移聚酮合酶(trans-AT PKSs)是一种模块化的巨型酶,它采用不寻常的催化结构域来组装各种生物活性天然产物。其中一种 PKS 负责肟嘧啶类抗癌药物——肟取代苯并内酯烯酰胺的生物合成,这些化合物可以抑制液泡 H+-ATP 酶。在这里,我们描述了假单胞菌 baetica 中肟嘧啶基因簇的鉴定,以及四种新型肟嘧啶变体的特性,包括一种结构更简单的中间体,它保留了强大的抗癌活性。我们使用体内、体外和计算相结合的方法,实验阐明了肟嘧啶的生物合成途径,并揭示了 O-甲氧基肟形成的前所未有的机制。我们表明,这个过程涉及到一个专门的单加氧酶和甲基转移酶结构域,并提供了对其活性、机制和特异性的深入了解。我们的发现扩展了 trans-AT PKS 的催化能力,并确定了生产新型肟嘧啶类似物的潜在策略。