Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Department of Biostatistics, Vanderbilt University, Nashville, TN 37235, USA.
Tomography. 2023 May 11;9(3):995-1009. doi: 10.3390/tomography9030081.
Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.
临床前成像在转化研究中是一个关键组成部分,其工作流程非常复杂,部署地点也存在差异。重要的是,美国国家癌症研究所(NCI)的精准医学计划强调使用转化型临床肿瘤学模型来解决癌症预防和治疗的生物学和分子基础。肿瘤学模型的使用,如患者来源的肿瘤异种移植物(PDX)和基因工程小鼠模型(GEMMs),开创了临床前研究可以为临床试验和方案提供信息的共同临床试验新时代,从而弥合了癌症研究中的转化鸿沟。同样,临床前成像作为转化成像研究的一种使能技术,填补了转化空白。与临床成像不同,临床成像设备制造商努力在临床现场满足标准,而临床前成像的标准既没有完全开发,也没有实施。这从根本上限制了临床前成像研究的元数据的收集和报告,从而阻碍了开放科学的发展,并影响了共临床成像研究的可重复性。为了解决这些问题,NCI 共临床成像研究计划(CIRP)进行了一项调查,以确定可重复的定量共临床成像的元数据要求。本报告总结了共临床成像元数据信息(CIMI),以支持定量共临床成像研究,对捕获共临床数据、实现互操作性和数据共享具有广泛的意义,并且可能导致对临床前数字成像和通信医学(DICOM)标准的更新。