Suppr超能文献

2023 年的杜氏肌营养不良症基因治疗:现状、展望及其他。

Duchenne Muscular Dystrophy Gene Therapy in 2023: Status, Perspective, and Beyond.

机构信息

Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.

Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA.

出版信息

Hum Gene Ther. 2023 May;34(9-10):345-349. doi: 10.1089/hum.2023.29242.ddu.

Abstract

Duchenne muscular dystrophy (DMD) was named more than 150 years ago. About four decades ago, the gene was discovered, and the reading frame shift was determined as the genetic underpinning. These pivotal findings significantly changed the landscape of DMD therapy development. Restoration of dystrophin expression with gene therapy became a primary focus. Investment in gene therapy has led to the approval of exon skipping by regulatory agencies, multiple clinical trials of systemic microdystrophin therapy using adeno-associated virus vectors, and revolutionary genome editing therapy using the CRISPR technology. However, many important issues surfaced during the clinical translation of DMD gene therapy (such as low efficiency of exon skipping, immune toxicity-induced serious adverse events, and patient death). In this issue of , several research articles highlighted some of the latest developments in DMD gene therapy. Importantly, a collection of articles from experts in the field reviewed the progress, major challenges, and future directions of DMD gene therapy. These insightful discussions have significant implications for gene therapy of other neuromuscular diseases.

摘要

杜氏肌营养不良症(DMD)是 150 多年前命名的。大约 40 年前,该基因被发现,并且确定阅读框移码是其遗传基础。这些关键发现极大地改变了 DMD 治疗开发的格局。用基因治疗恢复肌营养不良蛋白的表达成为主要关注点。对基因治疗的投资导致了监管机构批准外显子跳跃,使用腺相关病毒载体进行全身性微肌营养不良蛋白治疗的多项临床试验,以及使用 CRISPR 技术的革命性基因组编辑治疗。然而,在 DMD 基因治疗的临床转化过程中出现了许多重要问题(例如外显子跳跃效率低、免疫毒性引起的严重不良事件和患者死亡)。本期《柳叶刀神经病学》杂志中的几篇研究文章重点介绍了 DMD 基因治疗的一些最新进展。重要的是,该领域专家的一系列文章回顾了 DMD 基因治疗的进展、主要挑战和未来方向。这些有见地的讨论对其他神经肌肉疾病的基因治疗具有重要意义。

相似文献

1
Duchenne Muscular Dystrophy Gene Therapy in 2023: Status, Perspective, and Beyond.
Hum Gene Ther. 2023 May;34(9-10):345-349. doi: 10.1089/hum.2023.29242.ddu.
2
Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
RNA Biol. 2021 Jul;18(7):1048-1062. doi: 10.1080/15476286.2021.1874161. Epub 2021 Jan 20.
3
Evolving Therapeutic Options for the Treatment of Duchenne Muscular Dystrophy.
Neurotherapeutics. 2023 Oct;20(6):1669-1681. doi: 10.1007/s13311-023-01423-y. Epub 2023 Sep 6.
4
In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
Circ Res. 2017 Sep 29;121(8):923-929. doi: 10.1161/CIRCRESAHA.117.310996. Epub 2017 Aug 8.
5
Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing.
Expert Opin Biol Ther. 2021 Aug;21(8):1049-1061. doi: 10.1080/14712598.2021.1872539. Epub 2021 Jan 25.
6
The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.
Brain Dev. 2017 Aug;39(7):547-556. doi: 10.1016/j.braindev.2017.03.024. Epub 2017 Apr 5.
7
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
Sci Transl Med. 2017 Nov 29;9(418). doi: 10.1126/scitranslmed.aan8081.
9
Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.
Mol Ther. 2020 Sep 2;28(9):2044-2055. doi: 10.1016/j.ymthe.2020.05.024. Epub 2020 May 30.

引用本文的文献

2
Hepatic Manifestations Following Gene Therapy.
Gastro Hep Adv. 2025 Apr 24;4(8):100681. doi: 10.1016/j.gastha.2025.100681. eCollection 2025.
3
Transition of Care for Pediatric Neurologic Disorders - Are We There Yet?
Ann Indian Acad Neurol. 2025 Jan 1;28(1):26-31. doi: 10.4103/aian.aian_521_24. Epub 2025 Jan 20.
5
Hereditary Neuromuscular Disorders in Reproductive Medicine.
Genes (Basel). 2024 Oct 30;15(11):1409. doi: 10.3390/genes15111409.
6
Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy.
WIREs Mech Dis. 2024 Nov-Dec;16(6):e1653. doi: 10.1002/wsbm.1653. Epub 2024 Oct 23.
7
Mechanisms of Chimeric Cell Therapy in Duchenne Muscular Dystrophy.
Biomedicines. 2024 Sep 2;12(9):1996. doi: 10.3390/biomedicines12091996.
9
Gene therapy delivered micro-dystrophins co-localize with transgenic utrophin in dystrophic skeletal muscle fibers.
Neuromuscul Disord. 2024 Mar;36:1-5. doi: 10.1016/j.nmd.2024.01.004. Epub 2024 Jan 12.

本文引用的文献

1
Immune Responses to Muscle-Directed Adeno-Associated Viral Gene Transfer in Clinical Studies.
Hum Gene Ther. 2023 May;34(9-10):365-371. doi: 10.1089/hum.2023.056.
2
Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies.
Hum Gene Ther. 2023 May;34(9-10):388-403. doi: 10.1089/hum.2023.059.
3
Progress in Bioengineering of Myotropic Adeno-Associated Viral Gene Therapy Vectors.
Hum Gene Ther. 2023 May;34(9-10):350-364. doi: 10.1089/hum.2023.057.
4
CRISPR-Editing Therapy for Duchenne Muscular Dystrophy.
Hum Gene Ther. 2023 May;34(9-10):379-387. doi: 10.1089/hum.2023.053.
5
Optogenetic Control of Muscles: Potential Uses and Limitations.
Hum Gene Ther. 2023 May;34(9-10):416-429. doi: 10.1089/hum.2022.236. Epub 2023 May 5.
6
The Future of Exon Skipping for Duchenne Muscular Dystrophy.
Hum Gene Ther. 2023 May;34(9-10):372-378. doi: 10.1089/hum.2023.026. Epub 2023 May 3.
7
Dwarf Open Reading Frame (DWORF) Gene Therapy Ameliorated Duchenne Muscular Dystrophy Cardiomyopathy in Aged mdx Mice.
J Am Heart Assoc. 2023 Feb 7;12(3):e027480. doi: 10.1161/JAHA.122.027480. Epub 2023 Jan 25.
8
Microdystrophin Expression as a Surrogate Endpoint for Duchenne Muscular Dystrophy Clinical Trials.
Hum Gene Ther. 2023 May;34(9-10):404-415. doi: 10.1089/hum.2022.190. Epub 2023 Mar 14.
9
Brother of Cure Rare Disease CEO Dies in Trial of Duchenne Muscular Dystrophy Therapy.
Hum Gene Ther. 2022 Dec;33(23-24):1224-1227. doi: 10.1089/hum.2022.29228.bfs.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验