Suppr超能文献

膜皱褶是细胞外液黏度的一种机械传感器。

Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity.

作者信息

Pittman Matthew, Iu Ernest, Li Keva, Wang Mingjiu, Chen Junjie, Taneja Nilay, Jo Myung Hyun, Park Seungman, Jung Wei-Hung, Liang Le, Barman Ishan, Ha Taekjip, Gaitanaros Stavros, Liu Jian, Burnette Dylan, Plotnikov Sergey, Chen Yun

机构信息

Department of Mechanical Engineering, Johns Hopkins University.

Institute for NanoBioTechnology, Johns Hopkins University.

出版信息

Nat Phys. 2022 Sep;18(9):1112-1121. doi: 10.1038/s41567-022-01676-y. Epub 2022 Jul 25.

Abstract

Cell behaviour is affected by the physical forces and mechanical properties of the cells and of their microenvironment. The viscosity of extracellular fluid - a component of the cellular microenvironment - can vary by orders of magnitude, but its effect on cell behaviour remains largely unexplored. Using bio-compatible polymers to increase the viscosity of the culture medium, we characterize how viscosity affects cell behaviour. We find that multiple types of adherent cells respond in an unexpected but similar manner to elevated viscosity. In a highly viscous medium, cells double their spread area, exhibit increased focal adhesion formation and turnover, generate significantly greater traction forces, and migrate nearly two times faster. We observe that when cells are immersed in regular medium, these viscosity-dependent responses require an actively ruffling lamellipodium - a dynamic membrane structure at the front of the cell. We present evidence that cells utilize membrane ruffling to sense changes in extracellular fluid viscosity and to trigger adaptive responses.

摘要

细胞行为受到细胞及其微环境的物理力和机械特性的影响。细胞微环境的一个组成部分——细胞外液的粘度可在几个数量级范围内变化,但其对细胞行为的影响在很大程度上仍未得到探索。我们使用生物相容性聚合物来增加培养基的粘度,以此来表征粘度如何影响细胞行为。我们发现,多种类型的贴壁细胞对粘度升高的反应出人意料但却相似。在高粘度培养基中,细胞的铺展面积增加一倍,粘着斑的形成和周转增加,产生的牵引力显著更大,迁移速度快近两倍。我们观察到,当细胞浸入常规培养基中时,这些依赖于粘度的反应需要一个活跃的、起皱的片状伪足——细胞前端的一种动态膜结构。我们提供的证据表明,细胞利用膜起皱来感知细胞外液粘度的变化并触发适应性反应。

相似文献

1
Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity.
Nat Phys. 2022 Sep;18(9):1112-1121. doi: 10.1038/s41567-022-01676-y. Epub 2022 Jul 25.
2
High-viscosity driven modulation of biomechanical properties of human mesenchymal stem cells promotes osteogenic lineage.
Mater Today Bio. 2024 Apr 16;26:101058. doi: 10.1016/j.mtbio.2024.101058. eCollection 2024 Jun.
6
Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration.
Biomaterials. 2018 Sep;177:113-124. doi: 10.1016/j.biomaterials.2018.05.058. Epub 2018 Jun 2.
7
Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
Biomech Model Mechanobiol. 2020 Dec;19(6):2667-2681. doi: 10.1007/s10237-020-01363-y. Epub 2020 Jul 3.
9
Membrane viscoelasticity.
Biophys J. 1976 Jan;16(1):1-11. doi: 10.1016/S0006-3495(76)85658-5.

引用本文的文献

1
Endothelial Trauma Depends on Surface Charge and Extracellular Calcium Levels.
bioRxiv. 2025 Jul 18:2025.07.13.664578. doi: 10.1101/2025.07.13.664578.
2
Measuring and Analyzing Bacterial Movement in Mucus.
Methods Mol Biol. 2025;2942:187-197. doi: 10.1007/978-1-0716-4627-4_16.
4
The motor-clutch model in mechanobiology and mechanomedicine.
Mechanobiol Med. 2024 Apr 3;2(3):100067. doi: 10.1016/j.mbm.2024.100067. eCollection 2024 Sep.
5
NaBC1 Boron Transporter Enables Myoblast Response to Substrate Rigidity via Fibronectin-Binding Integrins.
Adv Sci (Weinh). 2025 May;12(20):e2407548. doi: 10.1002/advs.202407548. Epub 2025 Apr 24.
6
Regulation of cell migration by extracellular matrix mechanics at a glance.
J Cell Sci. 2025 Apr 1;138(7). doi: 10.1242/jcs.263574. Epub 2025 Apr 4.
7
Circulating Tumor Microenvironment in Metastasis.
Cancer Res. 2025 Apr 15;85(8):1354-1367. doi: 10.1158/0008-5472.CAN-24-1241.
8
9
Connecting single-molecule and superresolution microscopies to cell biology through theoretical modeling.
Biophys J. 2025 Jan 7;124(1):15-24. doi: 10.1016/j.bpj.2024.11.3308. Epub 2024 Nov 26.
10
Viscosity regulates cell spreading and cell-extracellular matrix interactions.
FEBS J. 2025 Feb;292(4):740-758. doi: 10.1111/febs.17306. Epub 2024 Nov 11.

本文引用的文献

1
Tissue topography steers migrating border cells.
Science. 2020 Nov 20;370(6519):987-990. doi: 10.1126/science.aaz4741.
2
Inhibition of focal adhesion kinase increases myofibril viscosity in cardiac myocytes.
Cytoskeleton (Hoboken). 2020 Sep;77(9):342-350. doi: 10.1002/cm.21632. Epub 2020 Sep 9.
4
Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation.
J Cell Sci. 2020 Apr 9;133(7):jcs239020. doi: 10.1242/jcs.239020.
5
Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts.
Biomaterials. 2020 Mar;234:119756. doi: 10.1016/j.biomaterials.2020.119756. Epub 2020 Jan 8.
6
Particle diffusion in extracellular hydrogels.
Soft Matter. 2020 Feb 7;16(5):1366-1376. doi: 10.1039/c9sm01837a. Epub 2020 Jan 15.
7
Hydrodynamic effects on the motility of crawling eukaryotic cells.
Soft Matter. 2020 Feb 7;16(5):1349-1358. doi: 10.1039/c9sm01797f. Epub 2020 Jan 14.
8
Cell motility dependence on adhesive wetting.
Soft Matter. 2019 Feb 27;15(9):2043-2050. doi: 10.1039/c8sm01832d.
9
Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease.
Exp Cell Res. 2019 Mar 1;376(1):92-97. doi: 10.1016/j.yexcr.2019.01.005. Epub 2019 Jan 8.
10
Curvotaxis directs cell migration through cell-scale curvature landscapes.
Nat Commun. 2018 Sep 28;9(1):3995. doi: 10.1038/s41467-018-06494-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验