Suppr超能文献

运用系统生物学和生物信息学来识别 COVID-19 与流感病毒合并感染对 COPD 的影响。

Using system biology and bioinformatics to identify the influences of COVID-19 co-infection with influenza virus on COPD.

机构信息

Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

出版信息

Funct Integr Genomics. 2023 May 24;23(2):175. doi: 10.1007/s10142-023-01091-3.

Abstract

Coronavirus disease 2019 (COVID-19) has speedily increased mortality globally. Although they are risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), less is known about the common molecular mechanisms behind COVID-19, influenza virus A (IAV), and chronic obstructive pulmonary disease (COPD). This research used bioinformatics and systems biology to find possible medications for treating COVID-19, IAV, and COPD via identifying differentially expressed genes (DEGs) from gene expression datasets (GSE171110, GSE76925, GSE106986, and GSE185576). A total of 78 DEGs were subjected to functional enrichment, pathway analysis, protein-protein interaction (PPI) network construct, hub gene extraction, and other potentially relevant disorders. Then, DEGs were discovered in networks including transcription factor (TF)-gene connections, protein-drug interactions, and DEG-microRNA (miRNA) coregulatory networks by using NetworkAnalyst. The top 12 hub genes were MPO, MMP9, CD8A, HP, ELANE, CD5, CR2, PLA2G7, PIK3R1, SLAMF1, PEX3, and TNFRSF17. We found that 44 TFs-genes, as well as 118 miRNAs, are directly linked to hub genes. Additionally, we searched the Drug Signatures Database (DSigDB) and identified 10 drugs that could potentially treat COVID-19, IAV, and COPD. Therefore, we evaluated the top 12 hub genes that could be promising DEGs for targeted therapy for SARS-CoV-2 and identified several prospective medications that may benefit COPD patients with COVID-19 and IAV co-infection.

摘要

2019 年冠状病毒病(COVID-19)在全球范围内迅速导致死亡率上升。尽管它们是严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的危险因素,但对于 COVID-19、甲型流感病毒(IAV)和慢性阻塞性肺疾病(COPD)背后的常见分子机制知之甚少。本研究使用生物信息学和系统生物学,通过从基因表达数据集(GSE171110、GSE76925、GSE106986 和 GSE185576)中识别差异表达基因(DEGs),寻找治疗 COVID-19、IAV 和 COPD 的可能药物。共筛选出 78 个 DEGs 进行功能富集、通路分析、蛋白质-蛋白质相互作用(PPI)网络构建、关键基因提取和其他潜在相关疾病分析。然后,使用 NetworkAnalyst 在包括转录因子(TF)-基因连接、蛋白质-药物相互作用和 DEG-微小 RNA(miRNA)核心调控网络在内的网络中发现 DEGs。前 12 个关键基因是 MPO、MMP9、CD8A、HP、ELANE、CD5、CR2、PLA2G7、PIK3R1、SLAMF1、PEX3 和 TNFRSF17。我们发现 44 个 TF-基因以及 118 个 miRNA 直接与关键基因相关。此外,我们还搜索了药物特征数据库(DSigDB),并确定了 10 种可能治疗 COVID-19、IAV 和 COPD 的药物。因此,我们评估了前 12 个关键基因,这些基因可能是针对 SARS-CoV-2 的有希望的 DEG,并且确定了几种潜在的药物,这些药物可能对 COVID-19 和 IAV 合并感染的 COPD 患者有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf4d/10205564/78cc64ac0f9f/10142_2023_1091_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验