Suppr超能文献

基于群体智能计算的精神分裂症脑电信号分类

Schizophrenia EEG Signal Classification Based on Swarm Intelligence Computing.

作者信息

Prabhakar Sunil Kumar, Rajaguru Harikumar, Kim Sun-Hee

机构信息

Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea.

Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638402, India.

出版信息

Comput Intell Neurosci. 2020 Nov 30;2020:8853835. doi: 10.1155/2020/8853835. eCollection 2020.

Abstract

One of the serious mental disorders where people interpret reality in an abnormal state is schizophrenia. A combination of extremely disordered thinking, delusion, and hallucination is caused due to schizophrenia, and the daily functions of a person are severely disturbed because of this disorder. A wide range of problems are caused due to schizophrenia such as disturbed thinking and behaviour. In the field of human neuroscience, the analysis of brain activity is quite an important research area. For general cognitive activity analysis, electroencephalography (EEG) signals are widely used as a low-resolution diagnosis tool. The EEG signals are a great boon to understand the abnormality of the brain disorders, especially schizophrenia. In this work, schizophrenia EEG signal classification is performed wherein, initially, features such as Detrend Fluctuation Analysis (DFA), Hurst Exponent, Recurrence Quantification Analysis (RQA), Sample Entropy, Fractal Dimension (FD), Kolmogorov Complexity, Hjorth exponent, Lempel Ziv Complexity (LZC), and Largest Lyapunov Exponent (LLE) are extracted initially. The extracted features are, then, optimized for selecting the best features through four types of optimization algorithms here such as Artificial Flora (AF) optimization, Glowworm Search (GS) optimization, Black Hole (BH) optimization, and Monkey Search (MS) optimization, and finally, it is classified through certain classifiers. The best results show that, for normal cases, a classification accuracy of 87.54% is obtained when BH optimization is utilized with Support Vector Machine-Radial Basis Function (SVM-RBF) kernel, and for schizophrenia cases, a classification accuracy of 92.17% is obtained when BH optimization is utilized with SVM-RBF kernel.

摘要

精神分裂症是一种严重的精神障碍,患者会以异常的方式解读现实。精神分裂症会导致极度紊乱的思维、妄想和幻觉,严重干扰患者的日常功能。精神分裂症会引发一系列问题,如思维和行为紊乱。在人类神经科学领域,大脑活动分析是一个非常重要的研究领域。对于一般认知活动分析,脑电图(EEG)信号被广泛用作一种低分辨率的诊断工具。EEG信号对于理解脑部疾病尤其是精神分裂症的异常情况非常有帮助。在这项工作中,进行了精神分裂症EEG信号分类,首先提取诸如去趋势波动分析(DFA)、赫斯特指数、递归定量分析(RQA)、样本熵、分形维数(FD)、柯尔莫哥洛夫复杂度、 Hjorth指数、莱姆佩尔-齐夫复杂度(LZC)和最大李雅普诺夫指数(LLE)等特征。然后,通过人工植物群(AF)优化、萤火虫搜索(GS)优化、黑洞(BH)优化和猴子搜索(MS)优化这四种优化算法对提取的特征进行优化,以选择最佳特征。最后,通过某些分类器进行分类。最佳结果表明,对于正常病例,当使用支持向量机-径向基函数(SVM-RBF)核与BH优化时,分类准确率为87.54%;对于精神分裂症病例,当使用SVM-RBF核与BH优化时,分类准确率为92.17%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验