Suppr超能文献

一种具有认知控制的持续学习神经网络模型。

A Neural Network Model of Continual Learning with Cognitive Control.

作者信息

Russin Jacob, Zolfaghar Maryam, Park Seongmin A, Boorman Erie, O'Reilly Randall C

机构信息

Dept. of Psychology, UC Davis.

Center for Neuroscience, UC Davis.

出版信息

Cogsci. 2022 Jul;44:1064-1071.

Abstract

Neural networks struggle in continual learning settings from catastrophic forgetting: when trials are blocked, new learning can overwrite the learning from previous blocks. Humans learn effectively in these settings, in some cases even showing an advantage of blocking, suggesting the brain contains mechanisms to overcome this problem. Here, we build on previous work and show that neural networks equipped with a mechanism for cognitive control do not exhibit catastrophic forgetting when trials are blocked. We further show an advantage of blocking over interleaving when there is a bias for active maintenance in the control signal, implying a tradeoff between maintenance and the strength of control. Analyses of map-like representations learned by the networks provided additional insights into these mechanisms. Our work highlights the potential of cognitive control to aid continual learning in neural networks, and offers an explanation for the advantage of blocking that has been observed in humans.

摘要

神经网络在持续学习环境中会因灾难性遗忘而陷入困境

当试验被分块时,新的学习会覆盖之前块中的学习内容。人类在这些环境中能有效地学习,在某些情况下甚至表现出分块的优势,这表明大脑包含克服此问题的机制。在此,我们基于之前的工作表明,配备认知控制机制的神经网络在试验被分块时不会表现出灾难性遗忘。我们进一步表明,当控制信号中存在主动维持的偏差时,分块比交错排列具有优势,这意味着在维持和控制强度之间存在权衡。对网络学习的类似地图的表征进行分析,为这些机制提供了更多见解。我们的工作突出了认知控制在帮助神经网络进行持续学习方面的潜力,并为在人类中观察到的分块优势提供了解释。

相似文献

4
Comparing continual task learning in minds and machines.比较心智和机器中的持续任务学习。
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10313-E10322. doi: 10.1073/pnas.1800755115. Epub 2018 Oct 15.
6
Continual Learning Using Bayesian Neural Networks.贝叶斯神经网络的持续学习。
IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):4243-4252. doi: 10.1109/TNNLS.2020.3017292. Epub 2021 Aug 31.
7
Adaptive Progressive Continual Learning.自适应递进持续学习。
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6715-6728. doi: 10.1109/TPAMI.2021.3095064. Epub 2022 Sep 14.
8
Continual Learning for Activity Recognition.持续学习的活动识别。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2416-2420. doi: 10.1109/EMBC48229.2022.9871690.

引用本文的文献

6
Continual task learning in natural and artificial agents.自然和人工代理中的持续任务学习。
Trends Neurosci. 2023 Mar;46(3):199-210. doi: 10.1016/j.tins.2022.12.006. Epub 2023 Jan 20.

本文引用的文献

4
Inferences on a multidimensional social hierarchy use a grid-like code.多维社会层级的推断使用网格状代码。
Nat Neurosci. 2021 Sep;24(9):1292-1301. doi: 10.1038/s41593-021-00916-3. Epub 2021 Aug 31.
5
Embracing Change: Continual Learning in Deep Neural Networks.拥抱变化:深度神经网络中的持续学习。
Trends Cogn Sci. 2020 Dec;24(12):1028-1040. doi: 10.1016/j.tics.2020.09.004. Epub 2020 Nov 3.
7
Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps.制图:抽象认知图的构建、组合和推断。
Neuron. 2020 Sep 23;107(6):1226-1238.e8. doi: 10.1016/j.neuron.2020.06.030. Epub 2020 Jul 22.
9
Reinforcement Learning, Fast and Slow.强化学习:快与慢。
Trends Cogn Sci. 2019 May;23(5):408-422. doi: 10.1016/j.tics.2019.02.006. Epub 2019 Apr 16.
10
Comparing continual task learning in minds and machines.比较心智和机器中的持续任务学习。
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10313-E10322. doi: 10.1073/pnas.1800755115. Epub 2018 Oct 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验