Suppr超能文献

前额叶皮层中通过门控实现转移和节省的自适应终身学习的建模框架。

A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex.

机构信息

Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;

Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29872-29882. doi: 10.1073/pnas.2009591117. Epub 2020 Nov 5.

Abstract

The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex's ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.

摘要

前额叶皮层对大量、通常是不同的模式进行编码和存储,并在它们之间灵活切换。最近,通过强化学习训练的人工神经网络的研究使得对模式编码和存储的基本过程进行建模成为可能。然而,大脑如何在保留和利用旧模式的同时创建新的模式仍然不清楚。在这里,我们提出了一个简单的神经网络框架,该框架结合了分层门控来模拟前额叶皮层灵活编码和使用多个不同模式的能力。我们展示了门控如何自然导致迁移学习和强大的记忆节省。然后,我们展示了我们的网络损伤如何模拟前额叶损伤患者中观察到的神经心理学损伤。我们的架构,我们称之为 DynaMoE,为前额叶皮层如何处理在现实世界中导航所需的大量模式提供了一个基本框架。

相似文献

3
A neural model of schemas and memory encoding.一种模式和记忆编码的神经模型。
Biol Cybern. 2020 Apr;114(2):169-186. doi: 10.1007/s00422-019-00808-7. Epub 2019 Nov 4.

引用本文的文献

4
Thalamocortical architectures for flexible cognition and efficient learning.丘脑皮质结构用于灵活的认知和高效的学习。
Trends Cogn Sci. 2024 Aug;28(8):739-756. doi: 10.1016/j.tics.2024.05.006. Epub 2024 Jun 17.
9
A survey and perspective on neuromorphic continual learning systems.神经形态持续学习系统的综述与展望
Front Neurosci. 2023 May 4;17:1149410. doi: 10.3389/fnins.2023.1149410. eCollection 2023.
10
The Computational and Neural Bases of Context-Dependent Learning.语境相关学习的计算与神经基础。
Annu Rev Neurosci. 2023 Jul 10;46:233-258. doi: 10.1146/annurev-neuro-092322-100402. Epub 2023 Mar 27.

本文引用的文献

4
Adaptive Mixtures of Local Experts.局部专家的自适应混合模型
Neural Comput. 1991 Spring;3(1):79-87. doi: 10.1162/neco.1991.3.1.79.
5
Continual lifelong learning with neural networks: A review.神经网络的持续终身学习:综述。
Neural Netw. 2019 May;113:54-71. doi: 10.1016/j.neunet.2019.01.012. Epub 2019 Feb 6.
6
Dopamine and Cognitive Control in Prefrontal Cortex.前额叶皮层中的多巴胺与认知控制。
Trends Cogn Sci. 2019 Mar;23(3):213-234. doi: 10.1016/j.tics.2018.12.006. Epub 2019 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验