Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29872-29882. doi: 10.1073/pnas.2009591117. Epub 2020 Nov 5.
The prefrontal cortex encodes and stores numerous, often disparate, schemas and flexibly switches between them. Recent research on artificial neural networks trained by reinforcement learning has made it possible to model fundamental processes underlying schema encoding and storage. Yet how the brain is able to create new schemas while preserving and utilizing old schemas remains unclear. Here we propose a simple neural network framework that incorporates hierarchical gating to model the prefrontal cortex's ability to flexibly encode and use multiple disparate schemas. We show how gating naturally leads to transfer learning and robust memory savings. We then show how neuropsychological impairments observed in patients with prefrontal damage are mimicked by lesions of our network. Our architecture, which we call DynaMoE, provides a fundamental framework for how the prefrontal cortex may handle the abundance of schemas necessary to navigate the real world.
前额叶皮层对大量、通常是不同的模式进行编码和存储,并在它们之间灵活切换。最近,通过强化学习训练的人工神经网络的研究使得对模式编码和存储的基本过程进行建模成为可能。然而,大脑如何在保留和利用旧模式的同时创建新的模式仍然不清楚。在这里,我们提出了一个简单的神经网络框架,该框架结合了分层门控来模拟前额叶皮层灵活编码和使用多个不同模式的能力。我们展示了门控如何自然导致迁移学习和强大的记忆节省。然后,我们展示了我们的网络损伤如何模拟前额叶损伤患者中观察到的神经心理学损伤。我们的架构,我们称之为 DynaMoE,为前额叶皮层如何处理在现实世界中导航所需的大量模式提供了一个基本框架。