自然和人工代理中的持续任务学习。

Continual task learning in natural and artificial agents.

机构信息

Department of Experimental Psychology, University of Oxford, Oxford, UK.

Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, UCL, London, UK.

出版信息

Trends Neurosci. 2023 Mar;46(3):199-210. doi: 10.1016/j.tins.2022.12.006. Epub 2023 Jan 20.

Abstract

How do humans and other animals learn new tasks? A wave of brain recording studies has investigated how neural representations change during task learning, with a focus on how tasks can be acquired and coded in ways that minimise mutual interference. We review recent work that has explored the geometry and dimensionality of neural task representations in neocortex, and computational models that have exploited these findings to understand how the brain may partition knowledge between tasks. We discuss how ideas from machine learning, including those that combine supervised and unsupervised learning, are helping neuroscientists understand how natural tasks are learned and coded in biological brains.

摘要

人类和其他动物是如何学习新任务的?一波脑记录研究调查了在任务学习过程中神经表示如何变化,重点关注任务如何以最小化相互干扰的方式被习得和编码。我们回顾了最近的工作,这些工作探索了新皮层中神经任务表示的几何形状和维度,以及利用这些发现来理解大脑如何在任务之间划分知识的计算模型。我们讨论了来自机器学习的思想,包括将监督学习和无监督学习结合起来的思想,这些思想如何帮助神经科学家理解自然任务是如何在生物大脑中被学习和编码的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c3/10914671/ad90389b9db8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索