IEEE Trans Biomed Eng. 2024 Aug;71(8):2391-2401. doi: 10.1109/TBME.2024.3370415. Epub 2024 Jul 18.
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in the brain and is widely used for brain disorder analysis. Previous studies focus on extracting fMRI representations using machine/deep learning methods, but these features typically lack biological interpretability. The human brain exhibits a remarkable modular structure in spontaneous brain functional networks, with each module comprised of functionally interconnected brain regions-of-interest (ROIs). However, existing learning-based methods cannot adequately utilize such brain modularity prior. In this paper, we propose a brain modularity-constrained dynamic representation learning framework for interpretable fMRI analysis, consisting of dynamic graph construction, dynamic graph learning via a novel modularity-constrained graph neural network (MGNN), and prediction and biomarker detection. The designed MGNN is constrained by three core neurocognitive modules (i.e., salience network, central executive network, and default mode network), encouraging ROIs within the same module to share similar representations. To further enhance discriminative ability of learned features, we encourage the MGNN to preserve network topology of input graphs via a graph topology reconstruction constraint. Experimental results on 534 subjects with rs-fMRI scans from two datasets validate the effectiveness of the proposed method. The identified discriminative brain ROIs and functional connectivities can be regarded as potential fMRI biomarkers to aid in clinical diagnosis.
静息态功能磁共振成像 (rs-fMRI) 可以反映大脑的自发性神经活动,广泛应用于脑疾病分析。先前的研究侧重于使用机器学习/深度学习方法提取 fMRI 表示,但这些特征通常缺乏生物学可解释性。人类大脑在自发脑功能网络中表现出显著的模块化结构,每个模块由功能上相互连接的脑感兴趣区 (ROI) 组成。然而,现有的基于学习的方法之前不能充分利用这种大脑的模块化。在本文中,我们提出了一种用于可解释 fMRI 分析的脑模块性约束动态表示学习框架,包括动态图构建、通过新颖的模块性约束图神经网络 (MGNN) 进行动态图学习,以及预测和生物标志物检测。设计的 MGNN 受到三个核心神经认知模块(即突显网络、中央执行网络和默认模式网络)的约束,鼓励同一模块内的 ROI 共享相似的表示。为了进一步增强学习特征的判别能力,我们通过图拓扑重建约束鼓励 MGNN 通过输入图的网络拓扑进行保留。来自两个数据集的 534 名 rs-fMRI 扫描受试者的实验结果验证了所提出方法的有效性。识别出的具有判别力的大脑 ROI 和功能连接性可以作为潜在的 fMRI 生物标志物,以辅助临床诊断。