Suppr超能文献

在临床机器学习开发中拥抱队列异质性:迈向可推广模型的一步。

Embracing cohort heterogeneity in clinical machine learning development: a step toward generalizable models.

机构信息

Center for Experimental and Molecular Medicine (CEMM), Location Academic Medical Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Quantitative Data Analytics Group, Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2023 May 24;13(1):8363. doi: 10.1038/s41598-023-35557-y.

Abstract

This study is a simple illustration of the benefit of averaging over cohorts, rather than developing a prediction model from a single cohort. We show that models trained on data from multiple cohorts can perform significantly better in new settings than models based on the same amount of training data but from just a single cohort. Although this concept seems simple and obvious, no current prediction model development guidelines recommend such an approach.

摘要

本研究简单说明了对队列进行平均化的益处,而不是从单个队列中开发预测模型。我们表明,从多个队列的数据中训练出的模型在新环境中的表现明显优于基于相同数量训练数据但仅来自单个队列的模型。虽然这个概念似乎很简单且显而易见,但目前没有预测模型开发指南推荐这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9582/10209202/2c5acb4dd7ce/41598_2023_35557_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验