Suppr超能文献

基于哈萨克斯坦行政健康数据使用机器学习预测糖尿病患者 1 年死亡率。

Predicting 1-year mortality of patients with diabetes mellitus in Kazakhstan based on administrative health data using machine learning.

机构信息

Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Avenue 53, Astana, Kazakhstan.

Department of Medicine, School of Medicine, Nazarbayev University, Kerey and Zhanibek Khans Street 5/1, Astana, Kazakhstan.

出版信息

Sci Rep. 2023 May 24;13(1):8412. doi: 10.1038/s41598-023-35551-4.

Abstract

Diabetes mellitus (DM) affects the quality of life and leads to disability, high morbidity, and premature mortality. DM is a risk factor for cardiovascular, neurological, and renal diseases, and places a major burden on healthcare systems globally. Predicting the one-year mortality of patients with DM can considerably help clinicians tailor treatments to patients at risk. In this study, we aimed to show the feasibility of predicting the one-year mortality of DM patients based on administrative health data. We use clinical data for 472,950 patients that were admitted to hospitals across Kazakhstan between mid-2014 to December 2019 and were diagnosed with DM. The data was divided into four yearly-specific cohorts (2016-, 2017-, 2018-, and 2019-cohorts) to predict mortality within a specific year based on clinical and demographic information collected up to the end of the preceding year. We then develop a comprehensive machine learning platform to construct a predictive model of one-year mortality for each year-specific cohort. In particular, the study implements and compares the performance of nine classification rules for predicting the one-year mortality of DM patients. The results show that gradient-boosting ensemble learning methods perform better than other algorithms across all year-specific cohorts while achieving an area under the curve (AUC) between 0.78 and 0.80 on independent test sets. The feature importance analysis conducted by calculating SHAP (SHapley Additive exPlanations) values shows that age, duration of diabetes, hypertension, and sex are the top four most important features for predicting one-year mortality. In conclusion, the results show that it is possible to use machine learning to build accurate predictive models of one-year mortality for DM patients based on administrative health data. In the future, integrating this information with laboratory data or patients' medical history could potentially boost the performance of the predictive models.

摘要

糖尿病(DM)影响生活质量,并导致残疾、高发病率和早逝。DM 是心血管、神经和肾脏疾病的一个风险因素,给全球的医疗保健系统带来了重大负担。预测 DM 患者的一年死亡率可以极大地帮助临床医生根据患者的风险来定制治疗方案。在这项研究中,我们旨在展示基于行政健康数据预测 DM 患者一年死亡率的可行性。我们使用了 2014 年年中至 2019 年 12 月期间在哈萨克斯坦各地医院住院的 472950 名患者的临床数据,这些患者被诊断患有 DM。数据分为四个逐年特定的队列(2016 年、2017 年、2018 年和 2019 年队列),以便根据截至前一年年底收集的临床和人口统计学信息,在特定年份内预测死亡率。然后,我们开发了一个综合的机器学习平台,为每个逐年特定的队列构建一年死亡率的预测模型。特别是,该研究实施并比较了九种分类规则在预测 DM 患者一年死亡率方面的性能。结果表明,梯度提升集成学习方法在所有逐年特定的队列中都优于其他算法,在独立测试集上的曲线下面积(AUC)在 0.78 到 0.80 之间。通过计算 SHAP(SHapley Additive exPlanations)值进行的特征重要性分析表明,年龄、糖尿病持续时间、高血压和性别是预测一年死亡率的前四个最重要的特征。总之,结果表明,使用机器学习根据行政健康数据为 DM 患者建立准确的一年死亡率预测模型是可行的。未来,将此信息与实验室数据或患者病史相结合,可能会提高预测模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b531/10209059/153b9f3800b8/41598_2023_35551_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验