Suppr超能文献

基于强化学习的自主机器人超声成像系统。

Autonomic Robotic Ultrasound Imaging System Based on Reinforcement Learning.

出版信息

IEEE Trans Biomed Eng. 2021 Sep;68(9):2787-2797. doi: 10.1109/TBME.2021.3054413. Epub 2021 Aug 19.

Abstract

OBJECTIVE

In this paper, we introduce an autonomous robotic ultrasound (US) imaging system based on reinforcement learning (RL). The proposed system and framework are committed to controlling the US probe to perform fully autonomous imaging of a soft, moving and marker-less target based only on single RGB images of the scene.

METHODS

We propose several different approaches and methods to achieve the following objectives: real-time US probe controlling, soft surface constant force tracking and automatic imaging. First, to express the state of the robotic US imaging task, we proposed a state representation model to reduce the dimensionality of the imaging state and encode the force and US information into the scene image space. Then, an RL agent is trained by a policy gradient theorem based RL model with the single RGB image as the only observation. To achieve adaptable constant force tracking between the US probe and the soft moving target, we propose a force-to-displacement control method based on an admittance controller.

RESULTS

In the simulation experiment, we verified the feasibility of the integrated method. Furthermore, we evaluated the proposed force-to-displacement method to demonstrate the safety and effectiveness of adaptable constant force tracking. Finally, we conducted phantom and volunteer experiments to verify the feasibility of the method on a real system.

CONCLUSION

The experiments indicated that our approaches were stable and feasible in the autonomic and accurate control of the US probe.

SIGNIFICANCE

The proposed system has potential application value in the image-guided surgery and robotic surgery.

摘要

目的

本文介绍了一种基于强化学习(RL)的自主式超声(US)成像系统。所提出的系统和框架致力于仅基于场景的单个 RGB 图像控制 US 探头对柔软、运动且无标记的目标进行完全自主成像。

方法

我们提出了几种不同的方法来实现以下目标:实时 US 探头控制、软表面恒力跟踪和自动成像。首先,为了表示机器人 US 成像任务的状态,我们提出了一种状态表示模型,以降低成像状态的维度,并将力和 US 信息编码到场景图像空间中。然后,通过基于策略梯度定理的 RL 模型,仅使用单个 RGB 图像作为唯一观察值来训练 RL 代理。为了实现 US 探头与柔软运动目标之间的自适应恒力跟踪,我们提出了一种基于导纳控制器的力-位移控制方法。

结果

在模拟实验中,我们验证了集成方法的可行性。此外,我们评估了所提出的力-位移方法,以证明自适应恒力跟踪的安全性和有效性。最后,我们进行了幻影和志愿者实验,以验证该方法在实际系统中的可行性。

结论

实验表明,我们的方法在 US 探头的自主和精确控制方面是稳定且可行的。

意义

所提出的系统在图像引导手术和机器人手术中具有潜在的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验