Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
Int J Comput Assist Radiol Surg. 2021 Dec;16(12):2189-2199. doi: 10.1007/s11548-021-02462-6. Epub 2021 Aug 9.
Autonomous ultrasound imaging by robotic ultrasound scanning systems in complex soft uncertain clinical environments is important and challenging to assist in therapy. To cope with the complex environment faced by the ultrasound probe during the scanning process, we propose an autonomous robotic ultrasound (US) control method based on reinforcement learning (RL) model to build the relationship between the environment and the system. The proposed method requires only contact force as input information to achieve robot control of the posture and contact force of the probe without any a priori information about the target and the environment.
First, an RL agent is proposed and trained by a policy gradient theorem-based RL model with the 6-degree-of-freedom (DOF) contact force of the US probe to learn the relationship between contact force and output force directly. Then, a force control strategy based on the admittance controller is proposed for synchronous force, orientation and position control by defining the desired contact force as the action space.
The proposed method was evaluated via collected US images, contact force and scan trajectories by scanning an unknown soft phantom. The experimental results indicated that the proposed method differs from the free-hand scanned approach in the US images within 3 ± 0.4%. The analysis results of contact forces and trajectories indicated that our method could make stable scanning processes on a soft uncertain skin surface and obtained US images.
We propose a concise and efficient force-guided US robot scanning control method for soft uncertain environment based on reinforcement learning. Experimental results validated our method's feasibility and validity for complex skin surface scanning, and the volunteer experiments indicated the potential application value in the complex clinical environment of robotic US imaging system especially with limited visual information.
在复杂的软不确定临床环境中,通过机器人超声扫描系统实现自主超声成像是辅助治疗的重要且具有挑战性的任务。为了应对超声探头在扫描过程中所面临的复杂环境,我们提出了一种基于强化学习(RL)模型的自主机器人超声(US)控制方法,以建立环境与系统之间的关系。该方法仅需要接触力作为输入信息,即可实现对探头姿态和接触力的机器人控制,而无需任何关于目标和环境的先验信息。
首先,我们提出了一种基于策略梯度定理的 RL 模型的 RL 代理,并通过该模型对 US 探头的 6 自由度(DOF)接触力进行训练,以直接学习接触力与输出力之间的关系。然后,我们通过定义期望接触力作为动作空间,提出了一种基于导纳控制器的力控制策略,用于同步力、方向和位置控制。
通过对未知软组织模型进行扫描,采集超声图像、接触力和扫描轨迹来评估所提出的方法。实验结果表明,与自由手扫描方法相比,该方法在超声图像上的差异在 3±0.4%以内。接触力和轨迹的分析结果表明,我们的方法可以在软不确定的皮肤表面上进行稳定的扫描过程,并获得超声图像。
我们提出了一种基于强化学习的简洁有效的力引导式 US 机器人扫描控制方法,用于软不确定环境。实验结果验证了我们的方法在复杂皮肤表面扫描中的可行性和有效性,志愿者实验表明了其在机器人 US 成像系统的复杂临床环境中具有潜在的应用价值,尤其是在视觉信息有限的情况下。