Suppr超能文献

用于高效稳定钙钛矿微模块的铅螯合空穴传输层。

Lead-chelating hole-transport layers for efficient and stable perovskite minimodules.

机构信息

Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA.

出版信息

Science. 2023 May 26;380(6647):823-829. doi: 10.1126/science.ade9463. Epub 2023 May 25.

Abstract

The defective bottom interfaces of perovskites and hole-transport layers (HTLs) limit the performance of p-i-n structure perovskite solar cells. We report that the addition of lead chelation molecules into HTLs can strongly interact with lead(II) ion (Pb), resulting in a reduced amorphous region in perovskites near HTLs and a passivated perovskite bottom surface. The minimodule with an aperture area of 26.9 square centimeters has a power conversion efficiency (PCE) of 21.8% (stabilized at 21.1%) that is certified by the National Renewable Energy Laboratory (NREL), which corresponds to a minimal small-cell efficiency of 24.6% (stabilized 24.1%) throughout the module area. Small-area cells and large-area minimodules with lead chelation molecules in HTLs had a light soaking stability of 3010 and 2130 hours, respectively, at an efficiency loss of 10% from the initial value under 1-sun illumination and open-circuit voltage conditions.

摘要

钙钛矿和空穴传输层(HTL)的底部界面缺陷限制了 p-i-n 结构钙钛矿太阳能电池的性能。我们报告说,将铅螯合分子添加到 HTL 中可以与铅(II)离子(Pb)强烈相互作用,导致靠近 HTL 的钙钛矿中无定形区域减少,并且钙钛矿底部表面钝化。具有 26.9 平方厘米孔径面积的微模块的功率转换效率(PCE)为 21.8%(稳定在 21.1%),这是由美国国家可再生能源实验室(NREL)认证的,这对应于整个模块面积的最小小电池效率为 24.6%(稳定在 24.1%)。在 1 个太阳光照和开路电压条件下,初始效率损失 10%时,HTL 中含有铅螯合分子的小面积电池和大面积微模块的光浸泡稳定性分别为 3010 和 2130 小时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验