Suppr超能文献

可解释人工智能在高风险决策系统中的作用:一项系统综述。

The role of explainable Artificial Intelligence in high-stakes decision-making systems: a systematic review.

作者信息

Sahoh Bukhoree, Choksuriwong Anant

机构信息

Informatics Innovation Center of Excellence (IICE), School of Informatics, Walailak University, Nakhon Si Thammarat, 80160 Tha Sala Thailand.

Department of Computer Engineering Faculty of Engineering, Prince of Songkla University, Had Yai, 90112 Songkla Thailand.

出版信息

J Ambient Intell Humaniz Comput. 2023;14(6):7827-7843. doi: 10.1007/s12652-023-04594-w. Epub 2023 Apr 3.

Abstract

A high-stakes event is an extreme risk with a low probability of occurring, but severe consequences (e.g., life-threatening conditions or economic collapse). The accompanying lack of information is a source of high-stress pressure and anxiety for emergency medical services authorities. Deciding on the best proactive plan and action in this environment is a complicated process, which calls for intelligent agents to automatically produce knowledge in the manner of human-like intelligence. Research in high-stakes decision-making systems has increasingly focused on eXplainable Artificial Intelligence (XAI), but recent developments in prediction systems give little prominence to explanations based on human-like intelligence. This work investigates XAI based on cause-and-effect interpretations for supporting high-stakes decisions. We review recent applications in the first aid and medical emergency fields based on three perspectives: available data, desirable knowledge, and the use of intelligence. We identify the limitations of recent AI, and discuss the potential of XAI for dealing with such limitations. We propose an architecture for high-stakes decision-making driven by XAI, and highlight likely future trends and directions.

摘要

高风险事件是一种发生概率低但后果严重(如危及生命的情况或经济崩溃)的极端风险。随之而来的信息匮乏是紧急医疗服务部门高压力和焦虑的来源。在这种环境下决定最佳的积极预案和行动是一个复杂的过程,这需要智能代理以类人智能的方式自动生成知识。高风险决策系统的研究越来越关注可解释人工智能(XAI),但预测系统的最新发展很少突出基于类人智能的解释。这项工作研究基于因果解释的可解释人工智能,以支持高风险决策。我们从可用数据、期望知识和智能运用这三个角度回顾了急救和医疗紧急领域的近期应用。我们确定了近期人工智能的局限性,并讨论了可解释人工智能应对此类局限性的潜力。我们提出了一种由可解释人工智能驱动的高风险决策架构,并强调了可能的未来趋势和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd40/10069719/3ab103be338d/12652_2023_4594_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验