Suppr超能文献

新冠病毒疾病病死率中的辛普森悖论:年龄相关因果效应的中介分析

Simpson's Paradox in COVID-19 Case Fatality Rates: A Mediation Analysis of Age-Related Causal Effects.

作者信息

von Kugelgen Julius, Gresele Luigi, Scholkopf Bernhard

机构信息

Max Planck Institute for Intelligent Systems 72076 Tübingen Germany.

University of Cambridge Cambridge CB2 1PZ U.K.

出版信息

IEEE Trans Artif Intell. 2021 Apr 14;2(1):18-27. doi: 10.1109/TAI.2021.3073088. eCollection 2021 Feb.

Abstract

We point out an instantiation of Simpson's paradox in COVID-19 case fatality rates (cfrs): comparing a large-scale study from China (February 17) with early reports from Italy (March 9), we find that cfrs are lower in Italy for every age group, but higher overall. This phenomenon is explained by a stark difference in case demographic between the two countries. Using this as a motivating example, we introduce basic concepts from mediation analysis and show how these can be used to quantify different direct and indirect effects when assuming a coarse-grained causal graph involving country, age, and case fatality. We curate an age-stratified cfr dataset with [Formula: see text]750 k cases and conduct a case study, investigating total, direct, and indirect (age-mediated) causal effects between different countries and at different points in time. This allows us to separate age-related effects from others unrelated to age and facilitates a more transparent comparison of cfrs across countries at different stages of the COVID-19 pandemic. Using longitudinal data from Italy, we discover a sign reversal of the direct causal effect in mid-March, which temporally aligns with the reported collapse of the healthcare system in parts of the country. Moreover, we find that direct and indirect effects across 132 pairs of countries are only weakly correlated, suggesting that a country's policy and case demographic may be largely unrelated. We point out limitations and extensions for future work, and finally, discuss the role of causal reasoning in the broader context of using AI to combat the COVID-19 pandemic. -During a global pandemic, understanding the causal effects of risk factors such as age on COVID-19 fatality is an important scientific question. Since randomised controlled trials are typically infeasible or unethical in this context, causal investigations based on observational data-such as the one carried out in this article-will, therefore, be crucial in guiding our understanding of the available data. Causal inference, in particular mediation analysis, can be used to resolve apparent statistical paradoxes; help educate the public and decision-makers alike; avoid unsound comparisons; and answer a range of causal questions pertaining to the pandemic, subject to transparently stated assumptions. Our exposition helps clarify how mediation analysis can be used to investigate direct and indirect effects along different causal paths and thus serves as a stepping stone for future studies of other important risk factors for COVID-19 besides age.

摘要

我们指出了新冠死亡率(CFR)中辛普森悖论的一个实例:将来自中国(2月17日)的一项大规模研究与意大利早期报告(3月9日)进行比较,我们发现意大利每个年龄组的CFR都更低,但总体上却更高。这种现象可以通过两国病例人口结构的显著差异来解释。以此作为一个有启发性的例子,我们介绍了中介分析的基本概念,并展示了在假设一个涉及国家、年龄和病例死亡率的粗粒度因果图时,如何利用这些概念来量化不同的直接和间接影响。我们精心整理了一个包含75万例病例的年龄分层CFR数据集,并进行了一项案例研究,调查不同国家之间以及不同时间点的总因果效应、直接因果效应和间接(年龄介导)因果效应。这使我们能够将与年龄相关的效应与其他与年龄无关的效应区分开来,并有助于在新冠疫情不同阶段对各国的CFR进行更透明的比较。利用来自意大利的纵向数据,我们发现3月中旬直接因果效应出现了符号反转,这在时间上与该国部分地区报告的医疗系统崩溃情况一致。此外,我们发现132对国家之间的直接和间接效应仅具有微弱的相关性,这表明一个国家的政策和病例人口结构可能在很大程度上没有关联。我们指出了未来工作的局限性和扩展方向,最后,讨论了因果推理在利用人工智能抗击新冠疫情这一更广泛背景下的作用。——在全球大流行期间,了解年龄等风险因素对新冠死亡的因果效应是一个重要的科学问题。由于在这种情况下随机对照试验通常不可行或不道德,因此基于观察数据进行因果调查——比如本文所开展的这项调查——对于指导我们理解现有数据至关重要。因果推断,特别是中介分析,可用于解决明显的统计悖论;帮助教育公众和决策者;避免不合理的比较;并回答一系列与疫情相关的因果问题,但前提是要明确陈述假设。我们的阐述有助于阐明如何利用中介分析来研究不同因果路径上的直接和间接效应,从而为未来除年龄之外对新冠其他重要风险因素的研究奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7d4/8791436/47e3fef4b3a1/vonku1-3073088.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验