Suppr超能文献

15种数量性状的多基因风险评分中的异方差性研究。

Investigation of heteroscedasticity in polygenic risk scores across 15 quantitative traits.

作者信息

Jung Hyein, Jung Hae-Un, Baek Eun Ju, Chung Ju Yeon, Kwon Shin Young, Kang Ji-One, Lim Ji Eun, Oh Bermseok

机构信息

Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.

Mendel, Seoul, Republic of Korea.

出版信息

Front Genet. 2023 May 9;14:1150889. doi: 10.3389/fgene.2023.1150889. eCollection 2023.

Abstract

The polygenic risk score (PRS) could be used to stratify individuals with high risk of diseases and predict complex trait of individual in a population. Previous studies developed a PRS-based prediction model using linear regression and evaluated the predictive performance of the model using the value. One of the key assumptions of linear regression is that the variance of the residual should be constant at each level of the predictor variables, called homoscedasticity. However, some studies show that PRS models exhibit heteroscedasticity between PRS and traits. This study analyzes whether heteroscedasticity exists in PRS models of diverse disease-related traits and, if any, it affects the accuracy of PRS-based prediction in 354,761 Europeans from the UK Biobank. We constructed PRSs for 15 quantitative traits using LDpred2 and estimated the existence of heteroscedasticity between PRSs and 15 traits using three different tests of the Breusch-Pagan (BP) test, score test, and F test. Thirteen out of fifteen traits show significant heteroscedasticity. Further replication using new PRSs from the PGS catalog and independent samples ( = 23,620) from the UK Biobank confirmed the heteroscedasticity in ten traits. As a result, ten out of fifteen quantitative traits show statistically significant heteroscedasticity between the PRS and each trait. There was a greater variance of residuals as PRS increased, and the prediction accuracy at each level of PRS tended to decrease as the variance of residuals increased. In conclusion, heteroscedasticity was frequently observed in the PRS-based prediction models of quantitative traits, and the accuracy of the predictive model may differ according to PRS values. Therefore, prediction models using the PRS should be constructed by considering heteroscedasticity.

摘要

多基因风险评分(PRS)可用于对疾病高风险个体进行分层,并预测人群中个体的复杂性状。先前的研究使用线性回归开发了基于PRS的预测模型,并使用 值评估了该模型的预测性能。线性回归的一个关键假设是,在预测变量的每个水平上,残差的方差应保持恒定,即同方差性。然而,一些研究表明,PRS模型在PRS和性状之间表现出异方差性。本研究分析了不同疾病相关性状的PRS模型中是否存在异方差性,以及如果存在,它是否会影响来自英国生物银行的354761名欧洲人的基于PRS的预测准确性。我们使用LDpred2构建了15个数量性状的PRS,并使用三种不同的检验方法——布雷斯克-帕根(BP)检验、得分检验和F检验,估计了PRS和15个性状之间异方差性的存在情况。15个性状中有13个显示出显著的异方差性。使用来自PGS目录的新PRS和来自英国生物银行的独立样本( = 23620)进行的进一步重复验证了10个性状中的异方差性。结果,15个数量性状中有10个在PRS和每个性状之间显示出统计学上显著的异方差性。随着PRS的增加,残差的方差更大,并且随着残差方差的增加,PRS每个水平的预测准确性往往会降低。总之,在基于PRS的数量性状预测模型中经常观察到异方差性,并且预测模型的准确性可能因PRS值而异。因此,使用PRS的预测模型应在考虑异方差性的情况下构建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7553/10203621/6b102e3a7f63/fgene-14-1150889-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验