Suppr超能文献

利用改进的 CycleGAN 框架从 X 光片中分解肌肉骨骼结构。

Decomposition of musculoskeletal structures from radiographs using an improved CycleGAN framework.

机构信息

Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.

Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.

出版信息

Sci Rep. 2023 May 25;13(1):8482. doi: 10.1038/s41598-023-35075-x.

Abstract

This paper presents methods of decomposition of musculoskeletal structures from radiographs into multiple individual muscle and bone structures. While existing solutions require dual-energy scan for the training dataset and are mainly applied to structures with high-intensity contrast, such as bones, we focused on multiple superimposed muscles with subtle contrast in addition to bones. The decomposition problem is formulated as an image translation problem between (1) a real X-ray image and (2) multiple digitally reconstructed radiographs, each of which contains a single muscle or bone structure, and solved using unpaired training based on the CycleGAN framework. The training dataset was created via automatic computed tomography (CT) segmentation of muscle/bone regions and virtually projecting them with geometric parameters similar to the real X-ray images. Two additional features were incorporated into the CycleGAN framework to achieve a high-resolution and accurate decomposition: hierarchical learning and reconstruction loss with the gradient correlation similarity metric. Furthermore, we introduced a new diagnostic metric for muscle asymmetry directly measured from a plain X-ray image to validate the proposed method. Our simulation and real-image experiments using real X-ray and CT images of 475 patients with hip diseases suggested that each additional feature significantly enhanced the decomposition accuracy. The experiments also evaluated the accuracy of muscle volume ratio measurement, which suggested a potential application to muscle asymmetry assessment from an X-ray image for diagnostic and therapeutic assistance. The improved CycleGAN framework can be applied for investigating the decomposition of musculoskeletal structures from single radiographs.

摘要

本文提出了一种从射线照片中将肌肉骨骼结构分解为多个单独的肌肉和骨骼结构的方法。虽然现有的解决方案需要双能扫描来进行训练数据集,并且主要应用于具有高强度对比度的结构,如骨骼,但我们专注于除骨骼之外还具有细微对比度的多个叠加肌肉。将分解问题表述为(1)真实射线图像和(2)多个数字重建射线图像之间的图像翻译问题,每个图像都包含单个肌肉或骨骼结构,并使用基于 CycleGAN 框架的无配对训练来解决。训练数据集是通过肌肉/骨骼区域的自动计算机断层扫描 (CT) 分割并通过几何参数虚拟投影创建的,这些参数与真实射线图像相似。为了实现高分辨率和准确的分解,我们在 CycleGAN 框架中加入了两个额外的特征:分层学习和具有梯度相关相似性度量的重建损失。此外,我们引入了一种新的诊断指标,即直接从普通射线图像测量的肌肉不对称性,以验证所提出的方法。我们使用 475 名髋部疾病患者的真实射线和 CT 图像进行了模拟和真实图像实验,结果表明每个额外的特征都显著提高了分解的准确性。实验还评估了肌肉体积比测量的准确性,这表明该方法有可能从射线图像评估肌肉不对称性,从而为诊断和治疗提供辅助。改进的 CycleGAN 框架可用于研究从单张射线照片中分解肌肉骨骼结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aea/10213012/3ef0cb29b104/41598_2023_35075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验