Suppr超能文献

基于改进的 CycleGAN 模型的跨模态迁移学习在超声图像中进行准确的肾脏分割。

Cross-modal Transfer Learning Based on an Improved CycleGAN Model for Accurate Kidney Segmentation in Ultrasound Images.

机构信息

School of Computer Science and Technology, Nanjing Tech University, Nanjing, China.

Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.

出版信息

Ultrasound Med Biol. 2024 Nov;50(11):1638-1645. doi: 10.1016/j.ultrasmedbio.2024.06.009. Epub 2024 Aug 24.

Abstract

OBJECTIVE

Deep-learning algorithms have been widely applied in the field of automatic kidney ultrasound (US) image segmentation. However, obtaining a large number of accurate kidney labels clinically is very difficult and time-consuming. To solve this problem, we have proposed an efficient cross-modal transfer learning method to improve the performance of the segmentation network on a limited labeled kidney US dataset.

METHODS

We aim to implement an improved image-to-image translation network called Seg-CycleGAN to generate accurate annotated kidney US data from labeled abdomen computed tomography images. The Seg-CycleGAN framework primarily consists of two structures: (i) a standard CycleGAN network to visually simulate kidney US from a publicly available labeled abdomen computed tomography dataset; (ii) and a segmentation network to ensure accurate kidney anatomical structures in US images. Based on the large number of simulated kidney US images and small number of real annotated kidney US images, we then aimed to employ a fine-tuning strategy to obtain better segmentation results.

RESULTS

To validate the effectiveness of the proposed method, we tested this method on both normal and abnormal kidney US images. The experimental results showed that the proposed method achieved a segmentation accuracy of 0.8548 in dice similarity coefficient on all testing datasets and 0.7622 on the abnormal testing dataset.

CONCLUSIONS

Compared with existing data augmentation and transfer learning methods, the proposed method improved the accuracy and generalization of the kidney US image segmentation network on a limited number of training datasets. It therefore has the potential to significantly reduce annotation costs in clinical settings.

摘要

目的

深度学习算法已广泛应用于自动肾脏超声(US)图像分割领域。然而,从临床角度获取大量准确的肾脏标签既困难又耗时。为了解决这个问题,我们提出了一种高效的跨模态迁移学习方法,以提高分割网络在有限的标注肾脏 US 数据集上的性能。

方法

我们旨在实现一种名为 Seg-CycleGAN 的改进图像到图像翻译网络,以从标注的腹部计算机断层扫描图像生成准确的标注肾脏 US 数据。Seg-CycleGAN 框架主要由两个结构组成:(i)一个标准的 CycleGAN 网络,用于从公开的标注腹部计算机断层扫描数据集视觉上模拟肾脏 US;(ii)和一个分割网络,用于确保 US 图像中肾脏解剖结构的准确性。基于大量模拟的肾脏 US 图像和少量真实标注的肾脏 US 图像,我们随后旨在采用微调策略以获得更好的分割结果。

结果

为了验证所提出方法的有效性,我们在正常和异常肾脏 US 图像上测试了该方法。实验结果表明,所提出的方法在所有测试数据集上的 Dice 相似系数分割精度达到 0.8548,在异常测试数据集上达到 0.7622。

结论

与现有的数据增强和迁移学习方法相比,所提出的方法提高了有限数量训练数据集上肾脏 US 图像分割网络的准确性和泛化能力。因此,它有潜力在临床环境中显著降低标注成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验