Suppr超能文献

急性缺血性脑卒中重症监护病房患者的院内死亡率预测:一种机器学习方法

In-Hospital Mortality Prediction among Intensive Care Unit Patients with Acute Ischemic Stroke: A Machine Learning Approach.

作者信息

Cummins Jack A, Gerber Ben S, Fukunaga Mayuko Ito, Henninger Nils, Kiefe Catarina I, Liu Feifan

机构信息

Manchester Essex Regional High School, Manchester, MA 01944, USA.

Department of Population and Quantitative Health Sciences, UMass Chan, Worcester, MA 01665, USA.

出版信息

Health Data Sci. 2025 Mar 17;5:0179. doi: 10.34133/hds.0179. eCollection 2025.

Abstract

Acute ischemic stroke is a leading cause of death in the United States. Identifying patients with stroke at high risk of mortality is crucial for timely intervention and optimal resource allocation. This study aims to develop and validate machine learning-based models to predict in-hospital mortality risk for intensive care unit (ICU) patients with acute ischemic stroke and identify important associated factors. Our data include 3,489 acute ischemic stroke admissions to the ICU for patients not discharged or dead within 48 h from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. Demographic, hospitalization type, procedure, medication, intake (intravenous and oral), laboratory, vital signs, and clinical assessment [e.g., Glasgow Coma Scale Scores (GCS)] during the initial 48 h of admissions were used to predict in-hospital mortality after 48 h of ICU admission. We explored 3 machine learning models (random forests, logistic regression, and XGBoost) and applied Bayesian optimization for hyperparameter tuning. Important features were identified using learned coefficients. Experiments show that XGBoost tuned for area under the receiver operating characteristic curve (AUC ROC) was the best performing model (AUC ROC 0.86, F1 0.52), compared to random forests (AUC ROC 0.85, F1 0.47) and logistic regression (AUC ROC 0.75, F1 0.40). Top features include GCS, blood urea nitrogen, and Richmond RASS score. The model also demonstrates good fairness for males versus females and across racial/ethnic groups. Machine learning has shown great potential in predicting in-hospital mortality risk for people with acute ischemic stroke in the ICU setting. However, more ethical considerations need to be applied to ensure that performance differences across different racial/ethnic groups will not exacerbate existing health disparities and will not harm historically marginalized populations.

摘要

急性缺血性中风是美国主要的死亡原因之一。识别有高死亡风险的中风患者对于及时干预和优化资源分配至关重要。本研究旨在开发并验证基于机器学习的模型,以预测重症监护病房(ICU)急性缺血性中风患者的院内死亡风险,并识别重要的相关因素。我们的数据包括来自重症监护医学信息集市-IV(MIMIC-IV)数据库的3489例入住ICU的急性缺血性中风患者,这些患者在48小时内未出院或死亡。入院初始48小时内的人口统计学信息、住院类型、手术、用药、摄入量(静脉和口服)、实验室检查、生命体征以及临床评估[如格拉斯哥昏迷量表评分(GCS)]被用于预测ICU入院48小时后的院内死亡率。我们探索了3种机器学习模型(随机森林、逻辑回归和XGBoost),并应用贝叶斯优化进行超参数调整。使用学习到的系数识别重要特征。实验表明,针对受试者工作特征曲线下面积(AUC ROC)进行调整的XGBoost是表现最佳的模型(AUC ROC为0.86,F1为0.52),相比之下,随机森林(AUC ROC为0.85,F1为0.47)和逻辑回归(AUC ROC为0.75,F1为0.40)。最重要的特征包括GCS、血尿素氮和里士满躁动镇静评分系统(RASS)评分。该模型在男性与女性以及不同种族/族裔群体之间也表现出良好的公平性。机器学习在预测ICU环境下急性缺血性中风患者的院内死亡风险方面显示出巨大潜力。然而,需要应用更多的伦理考量,以确保不同种族/族裔群体之间的性能差异不会加剧现有的健康差距,也不会伤害历史上处于边缘地位的人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c99f/11912875/c7b279501686/hds.0179.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验