Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA.
Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.
Science. 2021 Jan 15;371(6526):280-283. doi: 10.1126/science.abd2847.
Nanoparticle surface structure and geometry generally dictate where chemical transformations occur, with higher chemical activity at sites with lower activation energies. Here, we show how optical excitation of plasmons enables spatially modified phase transformations, activating otherwise energetically unfavorable sites. We have designed a crossed-bar Au-PdH antenna-reactor system that localizes electromagnetic enhancement away from the innately reactive PdH nanorod tips. Using optically coupled in situ environmental transmission electron microscopy, we track the dehydrogenation of individual antenna-reactor pairs with varying optical illumination intensity, wavelength, and hydrogen pressure. Our in situ experiments show that plasmons enable new catalytic sites, including dehydrogenation at the nanorod faces. Molecular dynamics simulations confirm that these new nucleation sites are energetically unfavorable in equilibrium and only accessible through tailored plasmonic excitation.
纳米粒子的表面结构和几何形状通常决定了化学转化发生的位置,具有较低活化能的位置具有更高的化学活性。在这里,我们展示了如何通过等离子体的光学激发来实现空间修饰的相转变,从而激活原本能量不利的位置。我们设计了一个交叉棒 Au-PdH 天线-反应器系统,将电磁场增强局域在固有反应性 PdH 纳米棒尖端之外。使用光耦合的原位环境透射电子显微镜,我们跟踪了具有不同光照明强度、波长和氢气压力的单个天线-反应器对的脱氢反应。我们的原位实验表明,等离子体能够产生新的催化活性位,包括在纳米棒表面的脱氢反应。分子动力学模拟证实,这些新的成核位在平衡时是能量不利的,只有通过定制的等离子体激发才能实现。