Suppr超能文献

基于向量加权均值(INFO)优化器制定一种考虑可再生能源发电不确定性的最优潮流策略。

Developing a strategy based on weighted mean of vectors (INFO) optimizer for optimal power flow considering uncertainty of renewable energy generation.

作者信息

Farhat Mohamed, Kamel Salah, Atallah Ahmed M, Abdelaziz Almoataz Y, Tostado-Véliz Marcos

机构信息

Electrical Power and Machines Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, 11517 Egypt.

Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, 81542 Egypt.

出版信息

Neural Comput Appl. 2023;35(19):13955-13981. doi: 10.1007/s00521-023-08427-x. Epub 2023 Mar 18.

Abstract

In recent years, more efforts have been exerted to increase the level of renewable energy sources (RESs) in the energy mix in many countries to mitigate the dangerous effects of greenhouse gases emissions. However, because of their stochastic nature, most RESs pose some operational and planning challenges to power systems. One of these challenges is the complexity of solving the optimal power flow (OPF) problem in existing RESs. This study proposes an OPF model that has three different sources of renewable energy: wind, solar, and combined solar and small-hydro sources in addition to the conventional thermal power. Three probability density functions (PDF), namely lognormal, Weibull, and Gumbel, are employed to determine available solar, wind, and small-hydro output powers, respectively. Many meta-heuristic optimization algorithms have been applied for solving OPF problem in the presence of RESs. In this work, a new meta-heuristic algorithm, weighted mean of vectors (INFO), is employed for solving the OPF problem in two adjusted standard IEEE power systems (30 and 57 buses). It is simulated by MATLAB software in different theoretical and practical cases to test its validity in solving the OPF problem of the adjusted power systems. The results of the applied simulation cases in this work show that INFO has better performance results in minimizing total generation cost and reducing convergence time among other algorithms.

摘要

近年来,许多国家为提高能源结构中可再生能源(RESs)的占比付出了更多努力,以减轻温室气体排放的危险影响。然而,由于其随机性,大多数可再生能源给电力系统带来了一些运行和规划方面的挑战。其中一个挑战是解决现有可再生能源中最优潮流(OPF)问题的复杂性。本研究提出了一种OPF模型,除了传统火电外,该模型有三种不同的可再生能源:风能、太阳能以及太阳能与小型水电的组合能源。分别采用三种概率密度函数(PDF),即对数正态分布、威布尔分布和耿贝尔分布,来确定可用的太阳能、风能和小型水电输出功率。许多元启发式优化算法已被应用于解决含可再生能源的OPF问题。在这项工作中,一种新的元启发式算法——向量加权均值(INFO),被用于求解两个经调整的标准IEEE电力系统(30节点和57节点)中的OPF问题。通过MATLAB软件在不同的理论和实际情况下进行仿真,以测试其在解决经调整电力系统的OPF问题中的有效性。本工作中应用的仿真案例结果表明,与其他算法相比,INFO在最小化总发电成本和缩短收敛时间方面具有更好的性能结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/10024033/545db59ec93d/521_2023_8427_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验