Suppr超能文献

基于增强多目标蜉蝣算法的最优随机潮流

Optimal stochastic power flow using enhanced multi-objective mayfly algorithm.

作者信息

Zhu Jianjun, Zhou Yongquan, Wei Yuanfei, Luo Qifang, Huang Huajuan

机构信息

College of Artificial Intelligence, Guangxi University for Nationalities, Nanning, 530006, China.

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.

出版信息

Heliyon. 2024 Feb 18;10(5):e26427. doi: 10.1016/j.heliyon.2024.e26427. eCollection 2024 Mar 15.

Abstract

For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2-4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.

摘要

对于经典的多目标最优潮流(MOOPF)问题,电力系统中仅使用传统的热力发电机。然而,人们对可再生能源的兴趣日益浓厚,使用风能和太阳能的MOOPF问题随之出现,即用风力涡轮机和太阳能光伏(PV)发电机取代系统中的部分热力发电机。含可再生能源的MOOPF的优化目标因研究案例而异。它们主要是燃料成本、排放、功率损耗和电压偏差(VD)这2至4个目标的组合。此外,由于可再生能源具有间断性、无序性和不稳定性,对可再生能源功率进行合理预测是一个主要难题。本文分别应用威布尔概率分布函数(PDF)和对数正态PDF来评估可用风能和可用太阳能。本文实现了一种基于非支配排序和可行解优势的增强型多目标蜉蝣算法(NSMA - SF),以解决含风能和太阳能的MOOPF问题。将算法NSMA - SF应用于改进后的IEEE - 30和标准IEEE - 57节点测试系统。对仿真结果进行了分析,并与最近报道的MOOPF结果进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feb0/10907536/9f01c19e3173/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验