Trojovský Pavel, Trojovská Eva, Akbari Ebrahim
Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic.
Sci Rep. 2024 Feb 19;14(1):4135. doi: 10.1038/s41598-024-54510-1.
This study introduces an enhanced self-adaptive wild goose algorithm (SAWGA) for solving economical-environmental-technical optimal power flow (OPF) problems in traditional and modern energy systems. Leveraging adaptive search strategies and robust diversity capabilities, SAWGA distinguishes itself from classical WGA by incorporating four potent optimizers. The algorithm's application to optimize an OPF model on the different IEEE 30-bus and 118-bus electrical networks, featuring conventional thermal power units alongside solar photovoltaic (PV) and wind power (WT) units, addresses the rising uncertainties in operating conditions, particularly with the integration of renewable energy sources (RESs). The inherent complexity of OPF problems in electrical networks, exacerbated by the inclusion of RESs like PV and WT units, poses significant challenges. Traditional optimization algorithms struggle due to the problem's high complexity, susceptibility to local optima, and numerous continuous and discrete decision parameters. The study's simulation results underscore the efficacy of SAWGA in achieving optimal solutions for OPF, notably reducing overall fuel consumption costs in a faster and more efficient convergence. Noteworthy attributes of SAWGA include its remarkable capabilities in optimizing various objective functions, effective management of OPF challenges, and consistent outperformance compared to traditional WGA and other modern algorithms. The method exhibits a robust ability to achieve global or nearly global optimal settings for decision parameters, emphasizing its superiority in total cost reduction and rapid convergence.
本研究介绍了一种增强型自适应大雁算法(SAWGA),用于解决传统和现代能源系统中的经济-环境-技术最优潮流(OPF)问题。SAWGA利用自适应搜索策略和强大的多样性能力,通过结合四种有效的优化器,使其有别于经典的大雁算法(WGA)。该算法应用于优化不同的IEEE 30节点和118节点电网的OPF模型,这些电网中既有传统的热力发电机组,又有太阳能光伏(PV)和风力发电(WT)机组,解决了运行条件中日益增加的不确定性问题,特别是随着可再生能源(RES)的整合。电网中OPF问题本身就很复杂,而光伏和风力发电机组等可再生能源的加入更是加剧了这种复杂性,带来了重大挑战。传统优化算法由于问题的高度复杂性、易陷入局部最优以及众多连续和离散决策参数而面临困难。该研究的仿真结果强调了SAWGA在实现OPF最优解方面的有效性,特别是在更快、更高效的收敛过程中显著降低了总体燃料消耗成本。SAWGA的显著特点包括其在优化各种目标函数方面的卓越能力、对OPF挑战的有效管理以及与传统WGA和其他现代算法相比始终具有更好的性能。该方法在为决策参数实现全局或接近全局最优设置方面表现出强大的能力,突出了其在降低总成本和快速收敛方面的优越性。