Suppr超能文献

通过将RNA测序差异表达分析与机器学习相结合,发现新冠病毒疾病和肾综合征出血热之间的共同致病过程。

Discovering common pathogenic processes between COVID-19 and HFRS by integrating RNA-seq differential expression analysis with machine learning.

作者信息

Noor Fatima, Ashfaq Usman Ali, Bakar Abu, Ul Haq Waqar, Allemailem Khaled S, Alharbi Basmah F, Al-Megrin Wafa Abdullah I, Tahir Ul Qamar Muhammad

机构信息

Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.

Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan.

出版信息

Front Microbiol. 2023 May 5;14:1175844. doi: 10.3389/fmicb.2023.1175844. eCollection 2023.

Abstract

Zoonotic virus spillover in human hosts including outbreaks of Hantavirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) imposes a serious impact on the quality of life of patients. Recent studies provide a shred of evidence that patients with Hantavirus-caused hemorrhagic fever with renal syndrome (HFRS) are at risk of contracting SARS-CoV-2. Both RNA viruses shared a higher degree of clinical features similarity including dry cough, high fever, shortness of breath, and certain reported cases with multiple organ failure. However, there is currently no validated treatment option to tackle this global concern. This study is attributed to the identification of common genes and perturbed pathways by combining differential expression analysis with bioinformatics and machine learning approaches. Initially, the transcriptomic data of hantavirus-infected peripheral blood mononuclear cells (PBMCs) and SARS-CoV-2 infected PBMCs were analyzed through differential gene expression analysis for identification of common differentially expressed genes (DEGs). The functional annotation by enrichment analysis of common genes demonstrated immune and inflammatory response biological processes enriched by DEGs. The protein-protein interaction (PPI) network of DEGs was then constructed and six genes named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and CDKN1A were identified as the commonly dysregulated hub genes among HFRS and COVID-19. Later, the classification performance of these hub genes were evaluated using Random Forest (RF), Poisson Linear Discriminant Analysis (PLDA), Voom-based Nearest Shrunken Centroids (voomNSC), and Support Vector Machine (SVM) classifiers which demonstrated accuracy >70%, suggesting the biomarker potential of the hub genes. To our knowledge, this is the first study that unveiled biological processes and pathways commonly dysregulated in HFRS and COVID-19, which could be in the next future used for the design of personalized treatment to prevent the linked attacks of COVID-19 and HFRS.

摘要

包括汉坦病毒和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)爆发在内的人畜共患病毒在人类宿主中的溢出对患者的生活质量造成了严重影响。最近的研究提供了一些证据,表明感染汉坦病毒导致肾综合征出血热(HFRS)的患者有感染SARS-CoV-2的风险。这两种RNA病毒具有较高程度的临床特征相似性,包括干咳、高烧、呼吸急促,以及某些报告的多器官衰竭病例。然而,目前尚无经过验证的治疗方案来应对这一全球关注的问题。本研究通过将差异表达分析与生物信息学和机器学习方法相结合,鉴定出常见基因和受干扰的通路。最初,通过差异基因表达分析对汉坦病毒感染的外周血单核细胞(PBMC)和SARS-CoV-2感染的PBMC的转录组数据进行分析,以鉴定常见的差异表达基因(DEG)。通过对常见基因的富集分析进行功能注释,结果表明DEG富集了免疫和炎症反应生物学过程。然后构建了DEG的蛋白质-蛋白质相互作用(PPI)网络,并确定了六个基因,即RAD51、ALDH1A1、UBA52、CUL3、GADD45B和CDKN1A,它们是HFRS和COVID-19中共同失调的枢纽基因。随后,使用随机森林(RF)、泊松线性判别分析(PLDA)、基于Voom的最近收缩质心(voomNSC)和支持向量机(SVM)分类器评估这些枢纽基因的分类性能,其准确率> 70%,表明这些枢纽基因具有作为生物标志物的潜力。据我们所知,这是第一项揭示HFRS和COVID-19中共同失调的生物学过程和通路的研究,这些过程和通路未来可能用于设计个性化治疗方案,以预防COVID-19和HFRS的连锁攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcbc/10208410/7d1a87f977fa/fmicb-14-1175844-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验