Suppr超能文献

人类丘脑对全脑信息处理的影响。

The impact of the human thalamus on brain-wide information processing.

机构信息

Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

出版信息

Nat Rev Neurosci. 2023 Jul;24(7):416-430. doi: 10.1038/s41583-023-00701-0. Epub 2023 May 26.

Abstract

The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.

摘要

丘脑是大脑半球内部一对较小的卵圆形灰质团块,位于间脑背侧部,属于基底神经节。它整合来自中枢神经系统多个区域的信号。这种关键的解剖位置使丘脑能够影响整个大脑的活动和适应性行为。然而,传统的研究范式一直难以将特定的功能归因于丘脑,并且在人类神经影像学文献中对其研究仍然不足。分析技术的最新进展和对大型高质量数据集的可及性的提高带来了一系列的研究和发现,这些研究和发现(重新)确立了丘脑作为人类认知神经科学核心关注点的地位,而认知神经科学领域仍然以皮质为中心。在这篇观点文章中,我们认为,使用全脑神经影像学方法来研究丘脑及其与大脑其他部分的相互作用,对于理解信息处理的系统级控制至关重要。为此,我们强调了丘脑在塑造一系列功能特征方面的作用,包括在静息状态和执行认知任务时的诱发电活动、区域间连接、网络拓扑和神经元变异性。

相似文献

1
The impact of the human thalamus on brain-wide information processing.
Nat Rev Neurosci. 2023 Jul;24(7):416-430. doi: 10.1038/s41583-023-00701-0. Epub 2023 May 26.
3
Exploring the brain network: a review on resting-state fMRI functional connectivity.
Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34. doi: 10.1016/j.euroneuro.2010.03.008. Epub 2010 May 14.
4
Modeling the role of the thalamus in resting-state functional connectivity: Nature or structure.
PLoS Comput Biol. 2023 Aug 3;19(8):e1011007. doi: 10.1371/journal.pcbi.1011007. eCollection 2023 Aug.
7
Structural and functional connectivity of the precuneus and thalamus to the default mode network.
Hum Brain Mapp. 2017 Feb;38(2):938-956. doi: 10.1002/hbm.23429. Epub 2016 Oct 14.
8
The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle.
Neuroimage. 2017 Oct 15;160:55-72. doi: 10.1016/j.neuroimage.2017.06.026. Epub 2017 Jun 12.
9
Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients.
Neuroimage. 2020 Nov 15;222:117224. doi: 10.1016/j.neuroimage.2020.117224. Epub 2020 Aug 12.
10
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
Neuroimage. 2010 Oct 1;52(4):1444-55. doi: 10.1016/j.neuroimage.2010.05.022. Epub 2010 Jun 1.

引用本文的文献

2
Cortico-subcortical converging organization at rest.
Sci Rep. 2025 Sep 1;15(1):32133. doi: 10.1038/s41598-025-18023-9.
3
Changes in ventral prefrontal-subcortical network connectivity during the course of remission from bipolar mania.
J Mood Anxiety Disord. 2025 Jun 1;11:100131. doi: 10.1016/j.xjmad.2025.100131. eCollection 2025 Sep.
4
Systematic cross-sectional age-associations in global fMRI signal topography.
Imaging Neurosci (Camb). 2024 Mar 8;2. doi: 10.1162/imag_a_00101. eCollection 2024.
5
Flicker light stimulation induces thalamocortical hyperconnectivity with LGN and higher-order thalamic nuclei.
Imaging Neurosci (Camb). 2023 Nov 23;1. doi: 10.1162/imag_a_00033. eCollection 2023.

本文引用的文献

1
Thalamocortical contributions to cognitive task activity.
Elife. 2022 Dec 20;11:e81282. doi: 10.7554/eLife.81282.
2
Thalamocortical contributions to working memory processes during the n-back task.
Neurobiol Learn Mem. 2023 Jan;197:107701. doi: 10.1016/j.nlm.2022.107701. Epub 2022 Nov 23.
3
Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour.
Neurosci Biobehav Rev. 2022 Dec;143:104921. doi: 10.1016/j.neubiorev.2022.104921. Epub 2022 Oct 21.
4
A temporal sequence of thalamic activity unfolds at transitions in behavioral arousal state.
Nat Commun. 2022 Sep 16;13(1):5442. doi: 10.1038/s41467-022-33010-8.
5
A unified 3D map of microscopic architecture and MRI of the human brain.
Sci Adv. 2022 Apr 29;8(17):eabj7892. doi: 10.1126/sciadv.abj7892. Epub 2022 Apr 27.
6
Subcortical Cognition: The Fruit Below the Rind.
Annu Rev Neurosci. 2022 Jul 8;45:361-386. doi: 10.1146/annurev-neuro-110920-013544. Epub 2022 Apr 6.
8
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states.
Nat Commun. 2021 Oct 14;12(1):6016. doi: 10.1038/s41467-021-26268-x.
9
Neuropsychological evidence of multi-domain network hubs in the human thalamus.
Elife. 2021 Oct 8;10:e69480. doi: 10.7554/eLife.69480.
10
Bridging large-scale cortical networks: Integrative and function-specific hubs in the thalamus.
iScience. 2021 Sep 9;24(10):103106. doi: 10.1016/j.isci.2021.103106. eCollection 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验