Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan.
Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan.
Int J Mol Sci. 2023 May 19;24(10):9011. doi: 10.3390/ijms24109011.
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., , , , , , , and ). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.
核雌激素受体 (ER) 和 G 蛋白偶联受体 (GPER1) 在大脑发育过程中发挥着至关重要的作用,参与树突和棘突生长以及突触形成。大豆异黄酮,如染料木黄酮、大豆苷元和大豆苷元代谢物 S-Equol,通过 ER 和 GPER1 发挥作用。然而,异黄酮对大脑发育的作用机制,特别是在树突发生和神经突发生过程中的作用机制,尚未得到广泛研究。我们使用小鼠原代小脑培养物、星形胶质细胞富集培养物、Neuro-2A 克隆细胞以及与神经元和星形胶质细胞共培养来评估异黄酮的作用。大豆异黄酮增强了雌二醇介导的浦肯野细胞树突分支。这种增强作用被 ER 拮抗剂 ICI 182,780 或选择性 GPER1 拮抗剂 G15 的共暴露所抑制。核 ERs 或 GPER1 的敲低也显著减少了树突的分支。特别是,ERα 的敲低效果最大。为了进一步研究特定的分子机制,我们使用了 Neuro-2A 克隆细胞。异黄酮还诱导了 Neuro-2A 细胞的神经突生长。与 ERβ 或 GPER1 敲低相比,ERα 的敲低最强烈地减少了异黄酮诱导的神经突生长。ERα 的敲低还降低了 ER 反应基因的 mRNA 水平(即 、 、 、 、 、 和 )。此外,异黄酮增加了 Neuro-2A 细胞中的 ERα 水平,但不增加 ERβ 或 GPER1 水平。Neuro-2A 细胞和星形胶质细胞的共培养研究也表明,异黄酮诱导的神经突生长增加,ICI 182,780 或 G15 的共暴露显著降低了这种作用。此外,异黄酮通过 ER 和 GPER1 增加了星形胶质细胞的增殖。这些结果表明,ERα 在异黄酮诱导的神经突发生中起着至关重要的作用。然而,GPER1 信号对于星形胶质细胞增殖和星形胶质细胞-神经元通讯也是必要的,这可能导致异黄酮诱导的神经突发生。