Ewals Lotte J S, van der Wulp Kasper, van den Borne Ben E E M, Pluyter Jon R, Jacobs Igor, Mavroeidis Dimitrios, van der Sommen Fons, Nederend Joost
Department of Radiology, Catharina Cancer Institute, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, The Netherlands.
Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
J Clin Med. 2023 May 18;12(10):3536. doi: 10.3390/jcm12103536.
To reduce the number of missed or misdiagnosed lung nodules on CT scans by radiologists, many Artificial Intelligence (AI) algorithms have been developed. Some algorithms are currently being implemented in clinical practice, but the question is whether radiologists and patients really benefit from the use of these novel tools. This study aimed to review how AI assistance for lung nodule assessment on CT scans affects the performances of radiologists. We searched for studies that evaluated radiologists' performances in the detection or malignancy prediction of lung nodules with and without AI assistance. Concerning detection, radiologists achieved with AI assistance a higher sensitivity and AUC, while the specificity was slightly lower. Concerning malignancy prediction, radiologists achieved with AI assistance generally a higher sensitivity, specificity and AUC. The radiologists' workflows of using the AI assistance were often only described in limited detail in the papers. As recent studies showed improved performances of radiologists with AI assistance, AI assistance for lung nodule assessment holds great promise. To achieve added value of AI tools for lung nodule assessment in clinical practice, more research is required on the clinical validation of AI tools, impact on follow-up recommendations and ways of using AI tools.
为了减少放射科医生在CT扫描中漏诊或误诊肺结节的数量,人们开发了许多人工智能(AI)算法。目前一些算法正在临床实践中应用,但问题是放射科医生和患者是否真的能从这些新型工具的使用中受益。本研究旨在回顾人工智能辅助CT扫描评估肺结节如何影响放射科医生的表现。我们检索了评估放射科医生在有无人工智能辅助情况下对肺结节进行检测或恶性预测表现的研究。关于检测,在人工智能辅助下,放射科医生获得了更高的灵敏度和曲线下面积(AUC),而特异性略低。关于恶性预测,在人工智能辅助下,放射科医生通常获得了更高的灵敏度、特异性和曲线下面积(AUC)。论文中对放射科医生使用人工智能辅助的工作流程描述往往有限。由于最近的研究表明在人工智能辅助下放射科医生的表现有所改善,人工智能辅助肺结节评估具有很大的前景。为了在临床实践中实现人工智能工具对肺结节评估的附加价值,需要对人工智能工具的临床验证、对随访建议的影响以及使用人工智能工具的方式进行更多研究。