Suppr超能文献

人工智能在肺癌精准医学中的应用:一项文献计量分析。

Artificial intelligence in precision medicine for lung cancer: A bibliometric analysis.

作者信息

Wang Yuchai, Zhang Weilong, Liu Xiang, Tian Li, Li Wenjiao, He Peng, Huang Sheng, He Fuyuan, Pan Xue

机构信息

Department of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.

Jiuzhitang Co., Ltd, Changsha, Hunan Province, China.

出版信息

Digit Health. 2025 Jan 3;11:20552076241300229. doi: 10.1177/20552076241300229. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

The increasing body of evidence has been stimulating the application of artificial intelligence (AI) in precision medicine research for lung cancer. This trend necessitates a comprehensive overview of the growing number of publications to facilitate researchers' understanding of this field.

METHOD

The bibliometric data for the current analysis was extracted from the Web of Science Core Collection database, CiteSpace, VOSviewer ,and an online website were applied to the analysis.

RESULTS

After the data were filtered, this search yielded 4062 manuscripts. And 92.27% of the papers were published from 2014 onwards. The main contributing countries were China, the United States, India, Japan, and Korea. These publications were mainly published in the following scientific disciplines, including Radiology Nuclear Medicine, Medical Imaging, Oncology, and Computer Science Notably, Li Weimin and Aerts Hugo J. W. L. stand out as leading authorities in this domain. In the keyword co-occurrence and co-citation cluster analysis of the publication, the knowledge base was divided into four clusters that are more easily understood, including screening, diagnosis, treatment, and prognosis.

CONCLUSION

This bibliometric study reveals deep learning frameworks and AI-based radiomics are receiving attention. High-quality and standardized data have the potential to revolutionize lung cancer screening and diagnosis in the era of precision medicine. However, the importance of high-quality clinical datasets, the development of new and combined AI models, and their consistent assessment for advancing research on AI applications in lung cancer are highlighted before current research can be effectively applied in clinical practice.

摘要

背景

越来越多的证据推动了人工智能(AI)在肺癌精准医学研究中的应用。这一趋势使得有必要对日益增多的出版物进行全面概述,以帮助研究人员了解该领域。

方法

本次分析的文献计量数据从科学网核心合集数据库中提取,应用CiteSpace、VOSviewer以及一个在线网站进行分析。

结果

数据筛选后,本次检索得到4062篇手稿。其中92.27%的论文于2014年以后发表。主要贡献国家为中国、美国、印度、日本和韩国。这些出版物主要发表在以下科学学科,包括放射学、核医学、医学成像、肿瘤学和计算机科学。值得注意的是,李为民和阿尔茨·雨果·J·W·L是该领域的权威人士。在出版物的关键词共现和共被引聚类分析中,知识库被分为四个更易理解的聚类,包括筛查、诊断、治疗和预后。

结论

这项文献计量研究表明深度学习框架和基于AI的放射组学受到关注。高质量和标准化的数据有可能在精准医学时代彻底改变肺癌的筛查和诊断。然而,在当前研究能够有效应用于临床实践之前,高质量临床数据集的重要性、新型和联合AI模型的开发以及它们对推进肺癌AI应用研究的一致性评估被凸显出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/078b/11696962/8a342ae33702/10.1177_20552076241300229-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验