文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于金属的纳米颗粒作为局部癌症免疫疗法佐剂的应用前景。

Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy.

作者信息

Naletova Irina, Tomasello Barbara, Attanasio Francesco, Pleshkan Victor V

机构信息

Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy.

Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy.

出版信息

Pharmaceutics. 2023 Apr 27;15(5):1346. doi: 10.3390/pharmaceutics15051346.


DOI:10.3390/pharmaceutics15051346
PMID:37242588
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10222518/
Abstract

Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.

摘要

免疫疗法是治疗癌症最有效的方法之一。成功进行免疫疗法的关键因素之一是实现强大而稳定的抗肿瘤免疫反应。现代免疫检查点疗法表明癌症是可以被战胜的。然而,它也指出了免疫疗法的弱点,因为并非所有肿瘤都对治疗有反应,而且由于不同免疫调节剂的全身毒性,它们的联合使用可能会受到严重限制。尽管如此,有一种既定的方法可以提高免疫疗法的免疫原性——使用佐剂。这些佐剂可增强免疫反应而不引起如此严重的不良反应。提高免疫疗法疗效最著名且研究最多的佐剂策略之一是使用金属基化合物,在更现代的应用中是金属基纳米颗粒(MNPs),它们作为外源性物质充当危险信号。在免疫调节剂的主要作用基础上增加固有免疫激活,使其能够引发强大的抗癌免疫反应。使用佐剂的特点是药物局部给药,这对其安全性有积极影响。在这篇综述中,我们将探讨MNPs作为癌症免疫疗法的低毒性佐剂的应用,局部给药时它们可能产生远隔效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/75fb7da45349/pharmaceutics-15-01346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/5c69d6fee620/pharmaceutics-15-01346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/de9fa3ff77b7/pharmaceutics-15-01346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/fab0116d828d/pharmaceutics-15-01346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/ed3973e325b2/pharmaceutics-15-01346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/75fb7da45349/pharmaceutics-15-01346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/5c69d6fee620/pharmaceutics-15-01346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/de9fa3ff77b7/pharmaceutics-15-01346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/fab0116d828d/pharmaceutics-15-01346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/ed3973e325b2/pharmaceutics-15-01346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e0/10222518/75fb7da45349/pharmaceutics-15-01346-g005.jpg

相似文献

[1]
Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy.

Pharmaceutics. 2023-4-27

[2]
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[3]
Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4 and CD8 T cells for immunotherapy of cancer.

J Immunother Cancer. 2022-9

[4]
Engineered Nanoparticles for Cancer Vaccination and Immunotherapy.

Acc Chem Res. 2020-10-20

[5]
Head and Neck Cancer Immunotherapy beyond the Checkpoint Blockade.

J Dent Res. 2019-7-24

[6]
Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation.

Mol Pharm. 2018-4-12

[7]
Nanocodelivery of an NIR photothermal agent and an acid-responsive TLR7 agonist prodrug to enhance cancer photothermal immunotherapy and the abscopal effect.

Biomaterials. 2024-3

[8]
Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics.

Proc Natl Acad Sci U S A. 2020-6-3

[9]
Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1.

J Immunother Cancer. 2019-8-10

[10]
A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2019-1-25

引用本文的文献

[1]
Nanoagent-Mediated Photothermal Therapy: From Delivery System Design to Synergistic Theranostic Applications.

Int J Nanomedicine. 2025-5-29

[2]
Immune Modulation with Oral DNA/RNA Nanoparticles.

Pharmaceutics. 2025-5-4

[3]
Recent research progress on metal ions and metal-based nanomaterials in tumor therapy.

Front Bioeng Biotechnol. 2025-2-7

[4]
Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics.

Front Bioeng Biotechnol. 2025-1-17

[5]
Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects.

Cancers (Basel). 2024-10-24

[6]
Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy.

Biomark Res. 2024-10-31

[7]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[8]
Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy.

Front Immunol. 2023

本文引用的文献

[1]
Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles.

Beilstein J Nanotechnol. 2023-3-8

[2]
Nanoparticle-Mediated STING Activation for Cancer Immunotherapy.

Adv Healthc Mater. 2023-7

[3]
Importance of Metal Biotransformation in Cell Response to Metallic Nanoparticles: A Transcriptomic Meta-analysis Study.

ACS Nanosci Au. 2022-9-30

[4]
DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2.

Int J Environ Res Public Health. 2023-1-21

[5]
Immune Checkpoint Inhibitors in Cancer Therapy-How Can We Improve Clinical Benefits?

Cancers (Basel). 2023-1-31

[6]
Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective.

J Nanobiotechnology. 2023-1-19

[7]
Theranostics through Utilizing Cherenkov Radiation of Radioisotope Zr-89 with a Nanocomposite Combination of TiO and MnO.

ACS Appl Mater Interfaces. 2023-1-25

[8]
Current and novel therapeutic strategies for optimizing immunotherapy outcomes in advanced non-small cell lung cancer.

Front Oncol. 2022-12-8

[9]
Toward Establishing an Ideal Adjuvant for Non-Inflammatory Immune Enhancement.

Cells. 2022-12-11

[10]
Toxicology assessment of manganese oxide nanomaterials with enhanced electrochemical properties using human in vitro models representing different exposure routes.

Sci Rep. 2022-12-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索