Fande Sonal, Srikanth Sangam, U S Jayapiriya, Amreen Khairunnisa, Dubey Satish Kumar, Javed Arshad, Goel Sanket
Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; MEMS, Microfluidics and Nanoelectronic (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India.
Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; MEMS, Microfluidics and Nanoelectronic (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India.
STAR Protoc. 2023 May 25;4(2):102327. doi: 10.1016/j.xpro.2023.102327.
Here, we present a protocol for a miniaturized microfluidic device that enables quantitative tracking of bacterial growth. We describe steps for fabricating a screen-printed electrode, a laser-induced graphene heater, and a microfluidic device with its integrations. We then detail the electrochemical detection of bacteria using a microfluidic fuel cell. The laser-induced graphene heater provides the temperature for the bacterial culture, and metabolic activity is recognized using a bacterial fuel cell. Please see Srikanth et al. for comprehensive information on the application and execution of this protocol.
在此,我们展示了一种用于小型微流控装置的方案,该装置能够对细菌生长进行定量跟踪。我们描述了制造丝网印刷电极、激光诱导石墨烯加热器以及微流控装置及其集成的步骤。然后,我们详细介绍了使用微流控燃料电池对细菌进行电化学检测的方法。激光诱导石墨烯加热器为细菌培养提供温度,并通过细菌燃料电池识别代谢活性。有关该方案的应用和实施的全面信息,请参阅Srikanth等人的文章。