IEEE Trans Neural Syst Rehabil Eng. 2023;31:2525-2534. doi: 10.1109/TNSRE.2023.3276745. Epub 2023 Jun 5.
Recently, artificial neural networks (ANNs) have been proven effective and promising for the steady-state visual evoked potential (SSVEP) target recognition. Nevertheless, they usually have lots of trainable parameters and thus require a significant amount of calibration data, which becomes a major obstacle due to the costly EEG collection procedures. This paper aims to design a compact network that can avoid the over-fitting of the ANNs in the individual SSVEP recognition.
This study integrates the prior knowledge of SSVEP recognition tasks into the attention neural network design. First, benefiting from the high model interpretability of the attention mechanism, the attention layer is applied to convert the operations in conventional spatial filtering algorithms to the ANN structure, which reduces network connections between layers. Then, the SSVEP signal models and the common weights shared across stimuli are adopted to design constraints, which further condenses the trainable parameters.
A simulation study on two widely-used datasets demonstrates the proposed compact ANN structure with proposed constraints effectively eliminates redundant parameters. Compared to existing prominent deep neural network (DNN)-based and correlation analysis (CA)-based recognition algorithms, the proposed method reduces the trainable parameters by more than 90% and 80% respectively, and boosts the individual recognition performance by at least 57% and 7% respectively.
Incorporating the prior knowledge of task into the ANN can make it more effective and efficient. The proposed ANN has a compact structure with less trainable parameters and thus requires less calibration with the prominent individual SSVEP recognition performance.
最近,人工神经网络(ANNs)已被证明对稳态视觉诱发电位(SSVEP)目标识别有效且有前景。然而,它们通常具有许多可训练的参数,因此需要大量的校准数据,这由于 EEG 采集过程昂贵而成为主要障碍。本文旨在设计一个紧凑的网络,可以避免 ANNs 在个体 SSVEP 识别中的过拟合。
本研究将 SSVEP 识别任务的先验知识集成到注意力神经网络设计中。首先,利用注意力机制的高模型可解释性,注意力层被应用于将传统空间滤波算法中的操作转换为 ANN 结构,从而减少层间的网络连接。然后,采用 SSVEP 信号模型和跨刺激共享的常见权重来设计约束,进一步压缩可训练参数。
在两个广泛使用的数据集上的模拟研究表明,所提出的带有约束条件的紧凑 ANN 结构有效地消除了冗余参数。与现有的突出的基于深度神经网络(DNN)和相关分析(CA)的识别算法相比,该方法分别减少了 90%和 80%以上的可训练参数,并分别提高了至少 57%和 7%的个体识别性能。
将任务的先验知识纳入 ANN 可以使其更有效和高效。所提出的 ANN 具有紧凑的结构,可训练参数较少,因此需要较少的校准,同时具有突出的个体 SSVEP 识别性能。